Publication

MATHICSE Technical Report : Subspace acceleration for large-scale parameter-dependent Hermitian eigenproblems

Daniel Kressner, Petar Sirkovic
2015
Rapport ou document de travail
Résumé

This work is concerned with approximating the smallest eigenvalue of a parameter-dependent Hermitian matrix A(μ) for many parameter values μ ∈ RP. The design of reliable and efficient algorithms for addressing this task is of importance in a variety of applications. Most notably, it plays a crucial role in estimating the error of reduced basis methods for parametrized partial differential equations. The current state-of-the-art approach, the so called Successive Constraint Method (SCM), addresses affine linear parameter dependencies by combining sampled Rayleigh quotients with linear programming techniques. In this work, we propose a subspace approach that additionally incorporates the sampled eigenvectors of A(μ) and implicitly exploits their smoothness properties. Like SCM, our approach results in rigorous lower and upper bounds for the smallest eigenvalues on D. Theoretical and experimental evidence is given to demonstrate that our approach represents a significant improvement over SCM in the sense that the bounds are often much tighter, at negligible additional cost.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.