We study fermion number non-conservation (or chirality breaking) in Abelian gauge theories at finite temperature. We consider the presence of a chemical potential mu for the fermionic charge, and monitor its evolution with real-time classical lattice simula- tions. This method accounts for short-scale fluctuations not included in the usual effective magneto-hydrodynamics (MHD) treatment. We observe a self-similar decay of the chemi- cal potential, accompanied by an inverse cascade process in the gauge field that leads to a production of long-range helical magnetic fields. We also study the chiral charge dynamics in the presence of an external magnetic field B, and extract its decay rate Gamma 5 equivalent to mml:mfracd mml:mspace width="0.25em"mml:mspacelog mml:mspace width="0.25em"mml:mspace mu dt mml:mfrac>. We provide in this way a new determination of the gauge coupling and magnetic field de- pendence of the chiral rate, which exhibits a best fit scaling as Gamma 5 proportional to mml:mfrac bevelled="true112mml:mfracB2. We confirm numerically the fluctuation-dissipation relation between Gamma 5 and Gamma(diff) , the Chern-Simons diffusion rate, which was obtained in a previous study. Remarkably, even though we are outside the MHD range of validity, the dynamics observed are in qualitative agreement with MHD predictions. The magnitude of the chiral/diffusion rate is however a factor similar to 10 times larger than expected in MHD, signaling that we are in reality exploring a dif- ferent regime accounting for short scale fluctuations. This discrepancy calls for a revision of the implications of fermion number and chirality non-conservation in finite tempera- ture Abelian gauge theories, though no definite conclusion can be made at this point until hard-thermal-loops are included in the lattice simulations.
Romain Christophe Rémy Fleury, Haoye Qin, Qiaolu Chen, Zhechen Zhang
Matthias Finger, Qian Wang, Yiming Li, Varun Sharma, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Jian Wang, João Miguel das Neves Duarte, Tagir Aushev, Matthias Wolf, Yi Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Federica Legger, Gabriele Grosso, Anna Mascellani, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Hui Wang, Seungkyu Ha, Pratyush Das, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer, Marko Stamenkovic