Publication

Hybrid-Spline Dictionaries for Continuous-Domain Inverse Problems

Résumé

We study one-dimensional continuous-domain inverse problems with multiple generalized total-variation regularization, which involves the joint use of several regularization operators. Our starting point is a new representer theorem that states that such inverse problems have hybrid-spline solutions with a total sparsity bounded by the number of measurements. We show that such continuous-domain problems can be discretized in an exact way by using a union of B-spline dictionary bases matched to the regularization operators. We then propose a multiresolution algorithm that selects an appropriate grid size that depends on the problem. Finally, we demonstrate the computational feasibility of our algorithm for multiple-order derivative regularization operators.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (21)
Régularisation (mathématiques)
vignette|Les courbes bleues et vertes correspondent à deux modèles differents, tous les deux étant des solutions possibles du problème consistant à décrire les coordonnées de tous les points rouges. L'application d'une régularisation favorise le modèle moins complexe correspondant à la courbe verte. Dans le domaine des mathématiques et des statistiques, et plus particulièrement dans le domaine de l'apprentissage automatique, la régularisation fait référence à un processus consistant à ajouter de l'information à un problème, s'il est mal posé ou pour éviter le surapprentissage.
Problème inverse
vignette|une somme de plusieurs nombres donne le nombre 27, mais peut-on les deviner à partir de 27 ? En science, un problème inverse est une situation dans laquelle on tente de déterminer les causes d'un phénomène à partir des observations expérimentales de ses effets. Par exemple, en sismologie, la localisation de l'origine d'un tremblement de terre à partir de mesures faites par plusieurs stations sismiques réparties sur la surface du globe terrestre est un problème inverse.
Lasso (statistiques)
En statistiques, le lasso est une méthode de contraction des coefficients de la régression développée par Robert Tibshirani dans un article publié en 1996 intitulé Regression shrinkage and selection via the lasso. Le nom est un acronyme anglais : Least Absolute Shrinkage and Selection Operator. Bien que cette méthode fut utilisée à l'origine pour des modèles utilisant l'estimateur usuel des moindres carrés, la pénalisation lasso s'étend facilement à de nombreux modèles statistiques tels que les modèles linéaires généralisés, les modèles à risque proportionnel, et les M-estimateurs.
Afficher plus
Publications associées (37)

Bayes-optimal Learning of Deep Random Networks of Extensive-width

Florent Gérard Krzakala, Lenka Zdeborová, Hugo Chao Cui

We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width ...
2023

(S)GD over Diagonal Linear Networks: Implicit Regularisation, Large Stepsizes and Edge of Stability

Nicolas Henri Bernard Flammarion, Scott William Pesme, Mathieu Even

In this paper, we investigate the impact of stochasticity and large stepsizes on the implicit regularisation of gradient descent (GD) and stochastic gradient descent (SGD) over diagonal linear networks. We prove the convergence of GD and SGD with macroscop ...
2023

Saddle-to-Saddle Dynamics in Diagonal Linear Networks

Nicolas Henri Bernard Flammarion, Scott William Pesme

In this paper we fully describe the trajectory of gradient flow over diagonal linear networks in the limit of vanishing initialisation. We show that the limiting flow successively jumps from a saddle of the training loss to another until reaching the minim ...
2023
Afficher plus
MOOCs associés (6)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.