Synaptic weightIn neuroscience and computer science, synaptic weight refers to the strength or amplitude of a connection between two nodes, corresponding in biology to the amount of influence the firing of one neuron has on another. The term is typically used in artificial and biological neural network research. In a computational neural network, a vector or set of inputs and outputs , or pre- and post-synaptic neurons respectively, are interconnected with synaptic weights represented by the matrix , where for a linear neuron where the rows of the synaptic matrix represent the vector of synaptic weights for the output indexed by .
Reconnaissance automatique de la parolevignette|droite|upright=1.4|La reconnaissance vocale est habituellement traitée dans le middleware ; les résultats sont transmis aux applications utilisatrices. La reconnaissance automatique de la parole (souvent improprement appelée reconnaissance vocale) est une technique informatique qui permet d'analyser la voix humaine captée au moyen d'un microphone pour la transcrire sous la forme d'un texte exploitable par une machine.
Plasticité synaptiqueLa plasticité synaptique, en neurosciences, désigne la capacité des synapses à moduler, à la suite d'un événement particulier - une augmentation ou une diminution ponctuelle et significative de leur activité - l'efficacité de la transmission du signal électrique d'un neurone à l'autre et à conserver, à plus ou moins long terme, une "trace" de cette modulation. De manière schématique, l'efficacité de la transmission synaptique, voire la synapse elle-même, est maintenue et modulée par l'usage qui en est fait.
3D XPointthumb|Schéma de principe de la mémoire 3D XPoint thumb|Intel Optane carte mère M.2 3D XPoint (prononcé en anglais « 3D CrossPoint ») est une technologie de mémoire non volatile annoncée par Intel et Micron en et abandonnée en 2022. La vitesse de fonctionnement et la longévité d'écriture étaient censées être chacune mille fois meilleures que celles de la mémoire flash. Alors que la mémoire NAND utilise les charges électriques et les blocs mémoires pour stocker des données, la mémoire 3D XPoint utilise la résistance électrique et les bits de données, qui peuvent être écrits et lus individuellement.
Physical neural networkA physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based approaches. More generally the term is applicable to other artificial neural networks in which a memristor or other electrically adjustable resistance material is used to emulate a neural synapse.
Mémoire non volatileUne mémoire non volatile est une mémoire informatique qui conserve ses données en l'absence d'alimentation électrique. On distingue plusieurs types de mémoires non volatiles : les mémoires à base de papier, par exemple les rubans perforés et les cartes perforées ; les mémoires à base de semi-conducteurs, par exemple les mémoires mortes (ROM) et les mémoires RAM non volatiles (NVRAM) ; les mémoires utilisant un support magnétique, par exemple les disquettes (floppy disks) et les disques durs (hard disks) ; les mémoires utilisant une surface réfléchissante lue par un laser, par exemple les CD et les DVD.
Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.
Plasticité fonction du temps d'occurrence des impulsionsLa (en Spike-timing-dependent plasticity, STDP) est un processus de modification du poids des synapses. Cette modification dépend du moment de déclenchement du potentiel d'action dans les neurones pré- et post-synaptique. Ce processus permettrait d'expliquer partiellement le développement cérébral et la mémorisation, en provoquant potentialisation à long terme (en Long-term potentiation, LTP) et dépression à long terme (en Long-term depression, LTD) des synapses.
Mémoire à tores magnétiquesLa mémoire à tores magnétiques fut la forme dominante de mémoire vive des ordinateurs durant 20 ans (de 1955 à 1975). Cette mémoire était composée des petits tores (anneaux) de ferrite traversés par des fils qui servaient à y écrire et y lire des informations. thumb|Schéma simplifié d'un tore avec fils d'écriture et de lecture Chaque tore correspond à un bit de donnée. Les tores peuvent être magnétisés dans deux directions différentes (sens horaire et antihoraire).
Machine de Turing universellevignette|upright=1.5|Une machine de Turing quelconque M réalise un calcul à partir d'une entrée écrite sur son ruban. Une machine de Turing universelle U simule le calcul de M sur l'entrée de M à partir d'une description de M et de l'entrée de M écrits sur le ruban de U. En informatique, plus précisément en informatique théorique, une machine de Turing universelle est une machine de Turing qui peut simuler n'importe quelle machine de Turing sur n'importe quelle entrée.