Synaptic weightIn neuroscience and computer science, synaptic weight refers to the strength or amplitude of a connection between two nodes, corresponding in biology to the amount of influence the firing of one neuron has on another. The term is typically used in artificial and biological neural network research. In a computational neural network, a vector or set of inputs and outputs , or pre- and post-synaptic neurons respectively, are interconnected with synaptic weights represented by the matrix , where for a linear neuron where the rows of the synaptic matrix represent the vector of synaptic weights for the output indexed by .
Speech recognitionSpeech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers. It is also known as automatic speech recognition (ASR), computer speech recognition or speech to text (STT). It incorporates knowledge and research in the computer science, linguistics and computer engineering fields. The reverse process is speech synthesis.
Synaptic plasticityIn neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory (see Hebbian theory). Plastic change often results from the alteration of the number of neurotransmitter receptors located on a synapse.
3D XPoint3D XPoint (pronounced three-D cross point) is a discontinued non-volatile memory (NVM) technology developed jointly by Intel and Micron Technology. It was announced in July 2015 and was available on the open market under the brand name Optane (Intel) from April 2017 to July 2022. Bit storage is based on a change of bulk resistance, in conjunction with a stackable cross-grid data access array. Initial prices are less than dynamic random-access memory (DRAM) but more than flash memory.
Physical neural networkA physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based approaches. More generally the term is applicable to other artificial neural networks in which a memristor or other electrically adjustable resistance material is used to emulate a neural synapse.
Non-volatile memoryNon-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data. Non-volatile memory typically refers to storage in semiconductor memory chips, which store data in floating-gate memory cells consisting of floating-gate MOSFETs (metal–oxide–semiconductor field-effect transistors), including flash memory storage such as NAND flash and solid-state drives (SSD).
Neural codingNeural coding (or neural representation) is a neuroscience field concerned with characterising the hypothetical relationship between the stimulus and the individual or ensemble neuronal responses and the relationship among the electrical activity of the neurons in the ensemble. Based on the theory that sensory and other information is represented in the brain by networks of neurons, it is thought that neurons can encode both digital and analog information.
Spike-timing-dependent plasticitySpike-timing-dependent plasticity (STDP) is a biological process that adjusts the strength of connections between neurons in the brain. The process adjusts the connection strengths based on the relative timing of a particular neuron's output and input action potentials (or spikes). The STDP process partially explains the activity-dependent development of nervous systems, especially with regard to long-term potentiation and long-term depression.
Magnetic-core memoryMagnetic-core memory was the predominant form of random-access computer memory for 20 years between about 1955 and 1975. Such memory is often just called core memory, or, informally, core. Core memory uses toroids (rings) of a hard magnetic material (usually a semi-hard ferrite) as transformer cores, where each wire threaded through the core serves as a transformer winding. Two or more wires pass through each core. Magnetic hysteresis allows each of the cores to "remember", or store a state.
Universal Turing machineIn computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible. He suggested that we may compare a man in the process of computing a real number to a machine which is only capable of a finite number of conditions q 1: q 2 . ....