Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper showcases the Sliding Frank-Wolfe (SFW), which is a novel optimization algorithm to solve the BLASSO sparse spikes super-resolution problem. The BLASSO is the continuous (i.e. off-thegrid or grid-less) counterpart of the well-known `1 sparse regularisation method (also known as LASSO or Basis Pursuit). Our algorithm is a variation on the classical Frank-Wolfe (also known as conditional gradient) which follows a recent trend of interleaving convex optimization updates (corresponding to adding new spikes) with non-convex optimization steps (corresponding to moving the spikes). We prove theoretically that this algorithm terminates in a finite number of steps under a mild nondegeneracy hypothesis.
Philippe Schwaller, Jeff Guo, Bojana Rankovic
Michel Bierlaire, Nicola Marco Ortelli, Matthieu Marie Cochon de Lapparent
Yves Perriard, Adrien Jean-Michel Thabuis, Xiaotao Ren