Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We consider minimizing a nonconvex, smooth function f on a Riemannian manifold M. We show that a perturbed version of Riemannian gradient descent algorithm converges to a second-order stationary point (and hence is able to escape saddle points on the manifold). The rate of convergence depends as 1/epsilon(2) on the accuracy c, which matches a rate known only for unconstrained smooth minimization. The convergence rate depends polylogarithmically on the manifold dimension d, hence is almost dimension -free. The rate also has a polynomial dependence on the parameters describing the curvature of the manifold and the smoothness of the function. While the unconstrained problem (Euclidean setting) is well -studied, our result is the first to prove such a rate for nonconvex, manifold-constrained problems.
Daniel Kressner, Axel Elie Joseph Séguin, Gianluca Ceruti
Aude Billard, Iason Batzianoulis, Anqing Duan