Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We consider rank-1 lattices for integration and reconstruction of functions with series expansion supported on a finite index set. We explore the connection between the periodic Fourier space and the non-periodic cosine space and Chebyshev space, via tent transform and then cosine transform, to transfer known results from the periodic setting into new insights for the non-periodic settings. Fast discrete cosine transform can be applied for the reconstruction phase. To reduce the size of the auxiliary index set in the associated component-by-component (CBC) construction for the lattice generating vectors, we work with a bi-orthonormal set of basis functions, leading to three methods for function reconstruction in the non-periodic settings. We provide new theory and efficient algorithmic strategies for the CBC construction. We also interpret our results in the context of general function approximation and discrete least-squares approximation.
, , , ,
Till Junge, Ali Falsafi, Martin Ladecký
Laurent Villard, Stephan Brunner, Alberto Bottino, Moahan Murugappan