**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Computing Cyclic Isogenies between Principally Polarized Abelian Varieties over Finite Fields

Résumé

Abelian varieties are fascinating objects, combining the fields of geometry and arithmetic. While the interest in abelian varieties has long time been of purely theoretic nature, they saw their first real-world application in cryptography in the mid 1980's, and have ever since lead to broad research on the computational and the arithmetic side. The most instructive examples of abelian varieties are elliptic curves and Jacobian varieties of hyperelliptic curves, and they come naturally equipped with some additional structure, called a principal polarization. Morphisms between abelian varieties that respect both the geometric and the arithmetic structure are called isogenies. In this thesis we focus on the computation of isogenies with cyclic kernel between principally polarized abelian varieties over finite fields.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (8)

Chargement

Chargement

Chargement

Concepts associés (12)

Arithmétique

L'arithmétique est la branche des mathématiques qui étudie les nombres entiers naturels (\N), relatifs (\Z) et rationnels (\Q), voire réels (\R),

Corps fini

En mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui es

Courbe elliptique

En mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points.
Les courbes elliptiques ont de nombreus

Nowadays, the most popular public-key cryptosystems are based on either the integer factorization or the discrete logarithm problem. The feasibility of solving these mathematical problems in practice is studied and techniques are presented to speed-up the underlying arithmetic on parallel architectures. The fastest known approach to solve the discrete logarithm problem in groups of elliptic curves over finite fields is the Pollard rho method. The negation map can be used to speed up this calculation by a factor √2. It is well known that the random walks used by Pollard rho when combined with the negation map get trapped in fruitless cycles. We show that previously published approaches to deal with this problem are plagued by recurring cycles, and we propose effective alternative countermeasures. Furthermore, fast modular arithmetic is introduced which can take advantage of prime moduli of a special form using efficient "sloppy reduction." The effectiveness of these techniques is demonstrated by solving a 112-bit elliptic curve discrete logarithm problem using a cluster of PlayStation 3 game consoles: breaking a public-key standard and setting a new world record. The elliptic curve method (ECM) for integer factorization is the asymptotically fastest method to find relatively small factors of large integers. From a cryptanalytic point of view the performance of ECM gives information about secure parameter choices of some cryptographic protocols. We optimize ECM by proposing carry-free arithmetic modulo Mersenne numbers (numbers of the form 2M – 1) especially suitable for parallel architectures. Our implementation of these techniques on a cluster of PlayStation 3 game consoles set a new record by finding a 241-bit prime factor of 21181 – 1. A normal form for elliptic curves introduced by Edwards results in the fastest elliptic curve arithmetic in practice. Techniques to reduce the temporary storage and enhance the performance even further in the setting of ECM are presented. Our results enable one to run ECM efficiently on resource-constrained platforms such as graphics processing units.

This paper presents software implementation speed records for modular multiplication arithmetic on the synergistic processing elements of the Cell broadband engine (Cell) architecture. The focus is on moduli which are of special interest in elliptic curve cryptography, that is, moduli of bit-lengths ranging from 192- to 521-bit. Finite field arithmetic using primes which allow particularly fast reduction is compared to Montgomery multiplication. The special primes considered are the five recommended NIST primes, as specified in the FIPS 186-3 standard, and the prime used in the elliptic curve curve25519. While presented and benchmarked on the Cell architecture, the proposed techniques to efficiently implement the modular multiplication algorithms are suited to run on any architecture which is able to compute multiple computations concurrently; e.g. graphics processing units.

We explore a few algebraic and geometric structures, through certain questions posed by modern cryptography. We focus on the cases of discrete logarithms in finite fields of small characteristic, the structure of isogeny graphs of ordinary abelian varieties, and the geometry of ideals in cyclotomic rings.
The presumed difficulty of computing discrete logarithms in certain groups is essential for the security of a number of communication protocols deployed today. One of the most classic choices for the underlying group is the multiplicative group of a finite field. Yet this choice is showing its age, and particularly when the characteristic of the field is small: recent algorithms allow to compute logarithms efficiently in these groups. However, these methods are only heuristic: they seem to always work, yet we do not know how to prove it. In the first part, we propose to study these methods in the hope to get a better understanding, notably by revealing the geometric structures at play.
A more modern choice is the group of rational points of an elliptic curve defined over a finite field. There, the difficulty of the discrete logarithm problem seems at its peak. More generally, the group of rational points of an abelian variety (notably the Jacobian of a curve of small genus) could be appropriate. One of the main tools for studying discrete logarithms on such objects is the notion of isogeny: a morphism from a variety to another one, which allows, among other things, to transfer the computation of a logarithm. Whereas the theory for elliptic curves is already mature, little is known about the structures formed by these isogenies (the isogeny graphs) for varieties of higher dimension. In the second part, we study the structure of isogeny graphs of absolutely simple, ordinary abelian varieties, with a few consequences regarding discrete logarithms on Jacobians of hyperelliptic curves of genus 2, the main object of concern of so-called hyperelliptic cryptography.
The security of quite a few protocols, notably those relying on discrete logarithms, would collapse in front of an adversary equipped with a large-scale quantum computer. This perspective motivates cryptographers to study problems that would resist this technological feat. One of the major directions is cryptography based on Euclidean lattices, relying on the difficulty to find short vectors in a given lattice. For efficiency, one benefits from considering lattices endowed with more structure, such as the ideals of a cyclotomic field. In the third part, we study the geometry of these ideals, and show that a quantum computer allows to efficiently find much shorter vectors in these ideals than is currently possible in generic lattices.