En mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique.
Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite. Cette dernière condition veut dire que lorsque l'on étend le corps de base k à une clôture algébrique de k, la nouvelle variété est réduite (cela implique que A est réduite). Si
k est de caractéristique nulle, la condition "géométriquement réduite" est automatiquement satisfaite pour tout groupe algébrique sur k (Théorème de Cartier).
Exemple : Les variétés abéliennes de dimension 1 sont les courbes elliptiques.
La jacobienne d'une courbe algébrique projective non-singulière géométriquement connexe, de genre g, est une variété abélienne de dimension g.
Si A est une variété abélienne de dimension sur C, alors A(C) est naturellement une variété analytique complexe, et même un groupe de Lie. C'est le quotient (au sens de la géométrie analytique complexe) de C par un réseau , le quotient admettant un plongement dans un espace projectif.
Une variété abélienne est toujours non-singulière, et la loi de groupe sur est commutative.
Si et sont des variétés abéliennes sur , et si est un morphisme de variétés algébriques qui envoie le zéro de sur le zéro de , alors est un homomorphisme de groupes algébriques (c'est-à-dire que est compatible avec les structures de groupes algébriques sur et ).
Structure de la torsion
Si A est une variété abélienne de dimension g définie sur un corps k et si n est un entier naturel premier à la caractéristique de k, alors l'ensemble des éléments de A à coordonnées dans une clôture algébrique de k et qui sont d'ordre divisant n (c'est donc le noyau de l'application multiplication par n dans le groupe ) est un groupe fini, isomorphe à .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
The aim of the course is to provide the students with a detailed description of the modern experimental techniques for testing geomaterials. Techniques and apparatuses are presented to test materials
Over the past decade, supply chain management has drawn enormous attention by industry and academia alike. Given an increasingly global economy, pronounced trends towards outsourcing and advances in i
André Weil, né le à Paris et mort à Princeton (New Jersey, États-Unis) le , est une des grandes figures parmi les mathématiciens du . Connu pour son travail fondamental en théorie des nombres et en géométrie algébrique, il est un des membres fondateurs du groupe Bourbaki. Il est le frère de la philosophe Simone Weil et père de l'écrivaine Sylvie Weil. vignette|gauche|La famille Weil en 1916. André Weil est le fils aîné d'une famille bourgeoise, unie, raisonnablement aisée et agnostique, d'origine juive alsacienne du côté de son père Bernard et juive russe du côté de sa mère Selma Reinherz.
En géométrie algébrique, les variétés projectives forment une classe importante de variétés. Elles vérifient des propriétés de compacité et des propriétés de finitude. C'est l'objet central de la géométrie algébrique globale. Sur un corps algébriquement clos, les points d'une variété projective sont les points d'un ensemble algébrique projectif. On fixe un corps (commutatif) k. Algèbre homogène. Soit B le quotient de par un idéal homogène ( idéal engendré par des polynômes homogènes).
En mathématiques, les schémas sont les objets de base de la géométrie algébrique, généralisant la notion de variété algébrique de plusieurs façons, telles que la prise en compte des multiplicités, l'unicité des points génériques et le fait d'autoriser des équations à coefficients dans un anneau commutatif quelconque.
Explore la décomposition isotypique dans les algèbres C de génération finie et ses implications, y compris les idéaux stables à G et les projections linéaires.
The combination of palladium salts and bipyridyl ligands can lead to the formation of a large variety of coordination complexes, with different shapes and sizes, displaying a very versatile host-guest chemistry. Increasing their structural complexity remai ...
We provide new explicit examples of lattice sphere packings in dimensions 54, 55, 162, 163, 486 and 487 that are the densest known so far, using Kummer families of elliptic curves over global function fields.In some cases, these families of elliptic curves ...
Given two elliptic curves and the degree of an isogeny between them, finding the isogeny is believed to be a difficult problem—upon which rests the security of nearly any isogeny-based scheme. If, however, to the data above we add information about the beh ...