We disprove a conjecture in Density Functional Theory, relative to multimarginal optimal transport maps with Coulomb cost. In the case of spherically symmetric data, which model for instance Lithium and Beryllium atoms, we show that some special maps, introduced by Seidl, Gori-Giorgi and Savin are not always optimal in the corresponding transport problem. We also provide examples of maps satisfying optimality conditions for special classes of data.
Andreas Mortensen, David Hernandez Escobar, Léa Deillon, Alejandra Inés Slagter, Eva Luisa Vogt, Jonathan Aristya Setyadji
Anna Fontcuberta i Morral, Alok Rudra, Santhanu Panikar Ramanandan, Joel René Sapera, Vladimir Dubrovskii, Sara Marti Sanchez
Danick Briand, Nicolas Francis Fumeaux