Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We present an end-to-end trainable Neural Network architecture for stereo imaging that jointly locates and estimates human body poses in 3D. Our method defines a 2D pose for each human in a stereo pair of images and uses a correlation layer with a composite field to associate each left-right pair of joints. In the absence of a stereo pose dataset, we show that we can train our method with synthetic data only and test it on real-world images (\textit{i.e.}, our training stage is domain invariant). Our method is particularly suitable for autonomous vehicles. We achieve state-of-the-art results for the 3D localization task on the challenging real-world KITTI dataset while running four times faster.
Jean-Baptiste Francis Marie Juliette Cordonnier
Pascal Fua, Nikita Durasov, Doruk Oner, Minh Hieu Lê