Isospin faibleEn physique des particules, l'isospin faible sous l'interaction faible correspond à l'isospin sous l'interaction forte. L'isospin faible est habituellement représenté par le symbole Tz ou IW. Les leptons ne sont pas soumis à l'interaction forte et donc l'isospin n'est pas défini pour eux. Mais tous les fermions élémentaires peuvent se grouper en multiplets sous l'interaction faible, de la même manière que, sous l'interaction forte, l'isospin crée des multiplets de hadrons de particules qui sont imperceptibles.
MuonLe muon est, selon le modèle standard de la physique des particules, une particule élémentaire de charge électrique négative, instable. Le muon a pour spin 1/2 et a les mêmes propriétés physiques que l'électron, mis à part sa masse, 207 fois plus grande (, c'est pour cela qu'on l'appelle parfois « électron lourd »). Les muons sont des fermions de la famille des leptons, comme les électrons et les taus. Les muons sont notés μ−. L'antimuon, l'antiparticule associée au muon, est notée μ+ et est chargée positivement.
Désintégration du protonEn physique des particules, la désintégration du proton désigne un mode hypothétique de décroissance radioactive dans laquelle le proton se désintègre en des particules subatomiques plus légères, comme le pion neutre et le positron. Il n'existe actuellement aucune preuve expérimentale indiquant que la désintégration du proton se produise ; ce qui place la demi-vie théorique du proton à une valeur supérieure à 10 années. Dans le modèle standard, les protons (un type de baryon), sont théoriquement stables parce que le nombre baryonique est censé se conserver.
Annihilation électron-positronvignette|Annihilation électron-positron intervenant de façon naturelle à la suite d'une désintégration β+. vignette|Diagramme de Feynman d'une annihilation électron-positron. Une annihilation électron-positron est le résultat possible de la collision d'un électron et de son antiparticule, le positron. L'électron et le positron sont annihilés et deux (ou plus) photons gamma sont créés ou, dans le cas de collisions à haute énergie, des photons et d'autres particules.
Grand collisionneur de hadronsvignette|Tunnel du LHC avec le tube contenant les électroaimants supraconducteurs. Le Grand collisionneur de hadrons (en anglais : Large Hadron Collider — LHC), est un accélérateur de particules mis en fonction en 2008 au CERN et situé dans la région frontalière entre la France et la Suisse entre la périphérie nord-ouest de Genève et le pays de Gex (France). C'est le plus puissant accélérateur de particules construit à ce jour, a fortiori depuis son amélioration achevée en 2015 après deux ans de mise à l'arrêt.
NeutrinoLe neutrino est une particule élémentaire du modèle standard de la physique des particules. Les neutrinos sont des fermions de , plus précisément des leptons. Ils sont électriquement neutres. Il en existe trois « saveurs » : électronique, muonique et tauique. L’existence du neutrino a été postulée pour la première fois en 1930 par Wolfgang Pauli pour expliquer le spectre continu de la désintégration bêta ainsi que l’apparente non-conservation du moment cinétique, et sa première confirmation expérimentale remonte à 1956.
CMS (expérience)L'expérience CMS (du nom du détecteur Compact Muon Solenoid, en français « solénoïde compact à muons ») est une des expériences de physique des particules du Grand collisionneur de hadrons (LHC) du CERN. Le détecteur CMS est situé dans une caverne souterraine à Cessy au point 5, en France, près de la frontière avec la Suisse. Il a été construit et est exploité par environ de presque , appartenant à scientifiques. Le détecteur a une forme cylindrique de de long et de diamètre, et pèse .
Modèle standard de la physique des particulesvignette|upright=2.0|Modèle standard des particules élémentaires avec les trois générations de fermions (trois premières colonnes), les bosons de jauge (quatrième colonne) et le boson de Higgs (cinquième colonne). Le modèle standard de la physique des particules est une théorie qui concerne l'électromagnétisme, les interactions nucléaires faible et forte, et la classification de toutes les particules subatomiques connues. Elle a été développée pendant la deuxième moitié du , dans une initiative collaborative mondiale, sur les bases de la mécanique quantique.
AntiprotonL'antiproton est l'antiparticule du proton. Les antiprotons sont stables, mais ils ont généralement une durée de vie courte, une collision avec un proton ordinaire faisant disparaître les deux particules. L'antiproton est observé pour la première fois en 1955, au cours d'une expérience conduite dans le bevatron du laboratoire national Lawrence-Berkeley, un accélérateur de particules. Quatre ans plus tard, les physiciens américains Emilio Segrè et Owen Chamberlain reçoivent le prix Nobel de physique pour la découverte de cette antiparticule.
Physique au-delà du modèle standardLa physique au-delà du modèle standard se rapporte aux développements théoriques de la physique des particules nécessaires pour expliquer les défaillances du modèle standard, telles que l'origine de la masse, le problème de la violation CP de l'interaction forte, les oscillations des neutrinos, l'asymétrie matière-antimatière, et la nature de la matière noire et de l'énergie noire.