Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
A gyrokinetic model is presented that can properly describe large and small amplitude electromagnetic fluctuations occurring on scale lengths ranging from the electron Larmor radius to the equilibrium perpendicular pressure gradient scale length, and the arbitrarily large deviations from thermal equilibrium that are present in the plasma periphery of tokamak devices. The formulation of the gyrokinetic model is based on a second-order accurate description of the single charged particle dynamics, derived from Lie perturbation theory, where the fast particle gyromotion is decoupled from the slow drifts assuming that the ratio of the ion sound Larmor radius to the perpendicular equilibrium pressure scale length is small. The collective behaviour of the plasma is obtained by a gyrokinetic Boltzmann equation that describes the evolution of the gyroaveraged distribution function. The collisional effects are included by a nonlinear gyrokinetic Dougherty collision operator. The gyrokinetic model is then developed into a set of coupled fluid equations referred to as the gyrokinetic moment hierarchy. To obtain this hierarchy, the gyroaveraged distribution function is expanded onto a Hermite–Laguerre velocity-space polynomial basis. Then, the gyrokinetic equation is projected onto the same basis yielding the spatial and temporal evolution of the Hermite–Laguerre expansion coefficients. A closed set of fluid equations for the lowest-order coefficients is presented. The Hermite–Laguerre projection is performed accurately at arbitrary perpendicular wavenumber values. Finally, the self-consistent evolution of the electromagnetic fields is described by a set of gyrokinetic Maxwell equations derived from a variational principle where the velocity integrals are explicitly evaluated.