Base de donnéesUne base de données permet de stocker et de retrouver des données structurées, semi-structurées ou des données brutes ou de l'information, souvent en rapport avec un thème ou une activité ; celles-ci peuvent être de natures différentes et plus ou moins reliées entre elles. Leurs données peuvent être stockées sous une forme très structurée (base de données relationnelles par exemple), ou bien sous la forme de données brutes peu structurées (avec les bases de données NoSQL par exemple).
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Entrepôt de donnéesvignette|redresse=1.5|Vue d'ensemble d'une architecture entrepôt de données. Le terme entrepôt de données ou EDD (ou base de données décisionnelle ; en anglais, data warehouse ou DWH) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle à l'aide à la décision en entreprise. Un entrepôt de données est une base de données regroupant une partie ou l'ensemble des données fonctionnelles d'une entreprise.
Analyse des donnéesL’analyse des données (aussi appelée analyse exploratoire des données ou AED) est une famille de méthodes statistiques dont les principales caractéristiques sont d'être multidimensionnelles et descriptives. Dans l'acception française, la terminologie « analyse des données » désigne donc un sous-ensemble de ce qui est appelé plus généralement la statistique multivariée. Certaines méthodes, pour la plupart géométriques, aident à faire ressortir les relations pouvant exister entre les différentes données et à en tirer une information statistique qui permet de décrire de façon plus succincte les principales informations contenues dans ces données.
Lac de donnéesUn lac de données (en anglais data lake) est une méthode de stockage de données massives utilisée par le big data (mégadonnées en français). Ces données sont gardées dans leurs formats originaux ou sont très peu transformées. Le lac de données donne la priorité au stockage rapide et volumineux de données hétérogènes en adoptant une architecture en cluster. Il n'est pas optimisé pour les requêtes SQL comme les SGBD relationnels classiques, et s'écarte des Propriétés ACID traditionnelles. On parle depuis 2010 de SGBD NoSQL.
XQueryXQuery est un langage de requête informatique permettant non seulement d'extraire des informations d'un document XML, ou d'une collection de documents XML, mais également d'effectuer des calculs complexes à partir des informations extraites et de reconstruire de nouveaux documents ou fragments XML. XQuery est une spécification du W3C dont la version 1.0 finale date de , et dont l'élaboration a demandé près de huit années. XQuery a été développé conjointement avec XSLT 2, une révision majeure du langage de transformation XML XSLT, avec lequel il partage le sous-ensemble .
Microsoft SQL ServerMicrosoft SQL Server est un système de gestion de base de données (SGBD) en langage SQL incorporant entre autres un SGBDR (SGBD relationnel ») développé et commercialisé par la société Microsoft. Il fonctionne sous les OS Windows et Linux (depuis ), mais il est possible de le lancer sur Mac OS via Docker, car il en existe une version en téléchargement sur le site de Microsoft. Histoire de Microsoft SQL Server Bien qu'il ait été initialement codéveloppé par Sybase et Microsoft, Ashton-Tate a également été associé à sa première version, sortie en 1989.
Big dataLe big data ( « grosses données » en anglais), les mégadonnées ou les données massives, désigne les ressources d’informations dont les caractéristiques en termes de volume, de vélocité et de variété imposent l’utilisation de technologies et de méthodes analytiques particulières pour créer de la valeur, et qui dépassent en général les capacités d'une seule et unique machine et nécessitent des traitements parallélisés. L’explosion quantitative (et souvent redondante) des données numériques permet une nouvelle approche pour analyser le monde.
Exploratory data analysisIn statistics, exploratory data analysis (EDA) is an approach of analyzing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modeling and thereby contrasts traditional hypothesis testing. Exploratory data analysis has been promoted by John Tukey since 1970 to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments.
Traitement transactionnel en ligneEn informatique et plus particulièrement dans le domaine des bases de données, le traitement transactionnel en ligne (en anglais online transaction processing, abrégé en OLTP) est un type d'application informatique qui sert à effectuer des modifications d'informations en temps réel. Ce type d'application est utilisé dans des activités opérationnelles, typiquement des transactions commerciales (opérations bancaires, achats de biens, billets, réservations). Ce type d'application se connecte à des bases de données en lecture et écriture.