Réduction de JordanLa réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Camille Jordan. Cette réduction est tellement employée, en particulier en analyse pour la résolution d'équations différentielles ou pour déterminer le terme général de certaines suites récurrentes, qu'on la nomme parfois « jordanisation des endomorphismes ». Elle consiste à exprimer la matrice d'un endomorphisme dans une base, dite base de Jordan, où l'expression de l'endomorphisme est réduite.
Machine-outilUne machine-outil est un équipement mécanique destiné à exécuter un usinage, ou autre tâche répétitive, avec une précision et une puissance adaptées. Elle imprime à un outil, qu'il soit fixe, mobile, ou tournant, un mouvement permettant d'usiner ou de déformer une pièce ou un ensemble fixés sur un plateau mobile ou non. Le tour et notamment le tour à métaux a joué un rôle de premier plan au cours de la révolution industrielle. C'est la machine élémentaire de la mécanique industrielle, celle sans laquelle aucune autre machine ne peut voir le jour.
Carré gréco-latinUn 'carré gréco-latin' ou carré eulérien d'ordre n, sur deux ensembles G et L de chacun n symboles, est un tableau carré de n lignes et n colonnes, contenant les n couples de , et où toute ligne et toute colonne contient exactement une fois chaque élément de L (en première position dans l'un des n couples) et chaque élément de G (en seconde position). Il s'agit de la superposition de deux carrés latins orthogonaux l'un à l'autre. On dit aussi « carré bilatin ».
Orthogonal arrayIn mathematics, an orthogonal array (more specifically, a fixed-level orthogonal array) is a "table" (array) whose entries come from a fixed finite set of symbols (for example, {1,2,...,v}), arranged in such a way that there is an integer t so that for every selection of t columns of the table, all ordered t-tuples of the symbols, formed by taking the entries in each row restricted to these columns, appear the same number of times. The number t is called the strength of the orthogonal array.