Compact convergenceIn mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology. Let be a topological space and be a metric space. A sequence of functions is said to converge compactly as to some function if, for every compact set , uniformly on as . This means that for all compact , If and with their usual topologies, with , then converges compactly to the constant function with value 0, but not uniformly.
Théorème de convergence dominéeEn mathématiques, et plus précisément en analyse, le théorème de convergence dominée est un des théorèmes principaux de la théorie de l'intégration de Lebesgue. Soit une suite de fonctions continues à valeurs réelles ou complexes sur un intervalle de la droite réelle. On fait les deux hypothèses suivantes : la suite converge simplement vers une fonction ; il existe une fonction continue telle queAlors L'existence d'une fonction intégrable majorant toutes les fonctions f équivaut à l'intégrabilité de la fonction (la plus petite fonction majorant toutes les fonctions f).
Algebraic quantum field theoryAlgebraic quantum field theory (AQFT) is an application to local quantum physics of C*-algebra theory. Also referred to as the Haag–Kastler axiomatic framework for quantum field theory, because it was introduced by . The axioms are stated in terms of an algebra given for every open set in Minkowski space, and mappings between those. Let be the set of all open and bounded subsets of Minkowski space. An algebraic quantum field theory is defined via a net of von Neumann algebras on a common Hilbert space satisfying the following axioms: Isotony: implies .
Fonction hypergéométriquevignette|Graphe d'une fonction hypergéométrique dans le plan complexe. En mathématiques, le terme de fonction hypergéométrique, parfois sous le nom « fonction hypergéométrique de Gauss », désigne généralement une fonction spéciale particulière, dépendant de trois paramètres a, b, c, notée F(a, b, c ; z), parfois notée sans indice quand il n'y a pas d'ambigüité, et qui s'exprime sous la forme de la série hypergéométrique (lorsque celle-ci converge).