Correlated states in twisted double bilayer graphene
Publications associées (77)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The growing research on two-dimensional materials reveals their exceptional physical properties and enormous potential for future applications and investigation of advanced physics phenomena. They represent the ultimate limit in terms of active channel thi ...
In modern ultrafast optoelectronic technologies based on wide band gap insulators, the non-equilibrium dynamics of photogenerated charges plays a major role. Unravelling the mechanisms of interaction between these charge carriers and their environment is c ...
We studied the changes in the optical properties of the RVO3 series (R = Sr, Ca, La, Y) using band structure calculations. These oxides present a transition from a non-magnetic metallic phase in SrVO3-CaVO3, to an antiferromagnetic insulator state in LaVO3 ...
Geometric electron optics may be implemented in solids when electron transport is ballistic on the length scale of a device. Currently, this is realized mainly in 2D materials characterized by circular Fermi surfaces. Here we demonstrate that the nearly pe ...
We propose a novel mechanism of flat band formation based on the relative biasing of only one sublattice against other sublattices in a honeycomb lattice bilayer. The mechanism allows modification of the band dispersion from parabolic to "Mexican hat"-like ...
The band structure of many semiconducting monolayer transition metal dichalcogenides (TMDs) possesses two degenerate valleys with equal and opposite Berry curvature. It has been predicted that, when illuminated with circularly polarized light, interband tr ...
Two-dimensional (2D) materials are under intensive investigation recently due to variety of electronic properties, ranging from insulators (h-BN) to semi-metals (graphene), semiconductors (MoS2, WSe2) with wide variability of band-gap and correlated phases ...
The ability to perform first-principles calculations of electronic and vibrational properties of two-dimensional heterostructures in a field-effect setup is crucial for the understanding and design of next-generation devices. We present here an implementat ...
The spin splitting of conduction band electrons in inversion-asymmetric InGaAs/InP quantum wells (QWs) is studied by Shubnikov-de Haas measurements combining the analysis of beating patterns and coincidence measurements in doubly tilted magnetic fields. Th ...
Institute of Physics (IoP) and Deutsche Physikalische Gesellschaft2017
Stacking atomic monolayers of semiconducting transition metal dichalcogenides (TMDs) has emerged as an effective way to engineer their properties. In principle, the staggered band alignment of TMD heterostructures should result in the formation of interlay ...