Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Perception de la paroleLa perception de la parole est le processus par lequel les humains sont capables d'interpréter et de comprendre les sons utilisés dans le langage. L'étude de la perception de la parole est reliée aux champs de la phonétique, de phonologie en linguistique, de psychologie cognitive et de perception en psychologie. Les recherches dans ce domaine essaient de comprendre comment les auditeurs humains reconnaissent les phonèmes (sons de la paroles) ou autres sons tels que la syllabe ou les rimes, et utilisent cette information pour comprendre le langage parlé.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Overjustification effectThe overjustification effect occurs when an expected external incentive such as money or prizes decreases a person's intrinsic motivation to perform a task. Overjustification is an explanation for the phenomenon known as motivational "crowding out". The overall effect of offering a reward for a previously unrewarded activity is a shift to extrinsic motivation and the undermining of pre-existing intrinsic motivation.
Motivation crowding theoryMotivation crowding theory is the theory from psychology and microeconomics suggesting that providing extrinsic incentives for certain kinds of behavior—such as promising monetary rewards for accomplishing some task—can sometimes undermine intrinsic motivation for performing that behavior. The result of lowered motivation, in contrast with the predictions of neoclassical economics, can be an overall in the total performance.
Bruit de mesureEn métrologie, le bruit de mesure est l'ensemble des signaux parasites qui se superposent au signal que l'on cherche à obtenir au moyen d'une mesure d'un phénomène physique. Ces signaux sont une gêne pour la compréhension de l'information que le signal transporte. La métrologie vise donc notamment à connaître leurs origines et à les caractériser, afin de les éliminer et d'obtenir le signal d'origine aussi distinctement que possible. La source du bruit d'origine externe est externe au système physique générant le signal utile et agit par influence sur celui-ci.
Théorie de l'autodéterminationLa théorie de l'autodétermination (acronyme TAD en français ou SDT anglais) est une macro-théorie de la motivation humaine et de la personnalité, qui concerne les tendances inhérentes au développement et les besoins psychologiques innés des êtres humains. Elle traite de la motivation agissant derrière les choix que les êtres humains font sans aucune influence ou interférence externe. La TAD définit le degré d'auto-motivation et d'auto-détermination d'un comportement.
Bruit de grenaillevignette|Illustration d'un bruit d'émission de photons : le nombre moyen de photons par pixel augmente, de gauche à droite et de haut en bas, dans une simulation d'un processus de Poisson à partir d'une photo. Un bruit de grenaille, bruit de Schottky ou bruit quantique (en anglais, shot noise) est un bruit de fond qui peut être modélisé par un processus de Poisson. En électronique, il est causé par le fait que le courant électrique n'est pas continu mais constitué de porteurs de charge élémentaires (en général des électrons).