A sEMG-driven Soft ExoSuit based on Twisted String Actuators for Elbow Assistive Applications
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Wearable robots for the legs have been developed for gait rehabilitation training and as assistive devices. Most devices have been rigid exoskeletons designed to substitute the function of users who are completely paralyzed. While effective for this target ...
BackgroundTo assist people with disabilities, exoskeletons must be provided with human-robot interfaces and smart algorithms capable to identify the user's movement intentions. Surface electromyographic (sEMG) signals could be suitable for this purpose, bu ...
BMC2019
,
The goal of this work is to enable robots to intelligently and compliantly adapt their motions to the intention of a human during physical Human-Robot Interaction in a multi-task setting. We employ a class of parameterized dynamical systems that allows for ...
SPRINGER2019
There is increasing interest in the use of soft materials in robotic applications ranging from wearable devices to soft grippers. While soft structures provide a number of favorable properties to robotic systems, sensing of large deformable soft structures ...
Mary Ann Liebert Inc.2018
,
Assistive robotics aims to design physically collaborative robots which are able to help human partners with cumbersome tasks; for instance, lifting a heavy plank/guard and inserting it into a frame at the ceiling. To reduce human load-share, it is expecte ...
2019
This study aimed to investigate the performance of an updated version of our pre-impact detection algorithm parsing out the output of a set of Inertial Measurement Units (IMUs) placed on lower limbs and designed to recognize signs of lack of balance due to ...
Myoelectric prostheses allow users to recover lost functionality by controlling a robotic device with their remaining muscle activity. Such commercial devices can give users a high level of autonomy, but still do not approach the dexterity of the intact hu ...
Mobility impairments are the most prevalent of all disabilities, affecting the life of nearly one in 20 individuals in developed countries. In the most severe cases, they can have dramatic consequences for the social, mental and physical well-being of thos ...
The rising demand for safe human-robot interaction in daily tasks has motivated significant research effort in the robotics field towards compliant and conformable robots, capable of replicating complex human movements in applications such as wearable reha ...
The goal of this work is to enable robots to intelligently and compliantly adapt their motions to the intention of a human during physical Human-Robot Interaction (pHRI) in a multi-task setting. We employ a class of parameterized dynamical systems that all ...