Metamaterial absorberA metamaterial absorber is a type of metamaterial intended to efficiently absorb electromagnetic radiation such as light. Furthermore, metamaterials are an advance in materials science. Hence, those metamaterials that are designed to be absorbers offer benefits over conventional absorbers such as further miniaturization, wider adaptability, and increased effectiveness. Intended applications for the metamaterial absorber include emitters, photodetectors, sensors, spatial light modulators, infrared camouflage, wireless communication, and use in solar photovoltaics and thermophotovoltaics.
Plasmonic metamaterialA plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.
Terahertz metamaterialA terahertz metamaterial is a class of composite metamaterials designed to interact at terahertz (THz) frequencies. The terahertz frequency range used in materials research is usually defined as 0.1 to 10 THz. This bandwidth is also known as the terahertz gap because it is noticeably underutilized. This is because terahertz waves are electromagnetic waves with frequencies higher than microwaves but lower than infrared radiation and visible light.
AcoustiqueL’acoustique est la science du son. La discipline a étendu son domaine à l'étude de toute onde mécanique dans tout fluide, où un ébranlement se propage presque exclusivement en onde longitudinale ; le calcul de ces ondes selon les caractéristiques du milieu s'applique aussi bien pour l'air aux fréquences audibles que pour tout milieu fluide homogène et toute fréquence, y compris infrasons et ultrasons. On parle de vibroacoustique quand l'étude se porte sur l'interaction entre solides, où existent des ondes transversales, et fluides.
Son (physique)vignette|upright=1|Propagation d'ondes sphériques de pression dans un fluide. Le son est une vibration mécanique d'un fluide, qui se propage sous forme dondes longitudinales grâce à la déformation élastique de ce fluide. Les êtres humains, comme beaucoup d'animaux, ressentent cette vibration grâce au sens de l'ouïe. L'acoustique est la science qui étudie les sons ; la psychoacoustique étudie la manière dont les organes du corps humain ressentent et l'être humain perçoit et interprète les sons.
Acoustique sous-marinevignette|Simulation acoustique dans un environnement océanique simple. L'acoustique sous-marine est l'étude de la propagation du son dans l'eau et de l'interaction des ondes mécaniques constituant le son avec l'eau, son contenu et ses frontières. L'eau peut être l'océan, un lac, une rivière ou un réservoir. Les fréquences typiques de l'acoustique sous-marine sont comprises entre 10 Hz et 1 MHz. La propagation du son dans l'océan à des fréquences inférieures à se poursuit dans les fonds marins, tandis que les fréquences supérieures à sont rarement utilisées car elles sont absorbées très rapidement.
Parametric arrayA parametric array, in the field of acoustics, is a nonlinear transduction mechanism that generates narrow, nearly side lobe-free beams of low frequency sound, through the mixing and interaction of high frequency sound waves, effectively overcoming the diffraction limit (a kind of spatial 'uncertainty principle') associated with linear acoustics. The main side lobe-free beam of low frequency sound is created as a result of nonlinear mixing of two high frequency sound beams at their difference frequency.
Canal SOFARvignette|Variation de la vitesse du son en fonction de la profondeur à une position au nord d’Hawaii, d’après le World Ocean Atlas 2005. Ici, l’axe du canal SOFAR est à une profondeur d’environ Le canal SOFAR, pour Sound Fixing and Ranging, ou deep sound channel (DSC, canal sonore profond), est une couche d’eau horizontale dans la mer, à la profondeur de laquelle la vitesse du son est à son minimum. Le canal SOFAR agit comme un guide d’ondes pour le son, et les ondes sonores de basse fréquence qui s’y trouvent peuvent voyager sur plusieurs milliers de kilomètres avant de se dissiper.
Acoustique non linéaireL’acoustique non linéaire est une technique qui permet de caractériser l'état d'intégrité et « la santé » de structures ou de matériaux, sans les dégrader, soit au cours de la production, soit en cours d'utilisation, soit dans le cadre de maintenance. L’acoustique non linéaire de par sa très haute sensibilité à l’endommagement redondant ou limité des matériaux semble être une récente voie amplement efficace pour le contrôle et l‘évaluation non destructifs.
Structural acousticsStructural acoustics is the study of the mechanical waves in structures and how they interact with and radiate into adjacent media. The field of structural acoustics is often referred to as vibroacoustics in Europe and Asia. People that work in the field of structural acoustics are known as structural acousticians. The field of structural acoustics can be closely related to a number of other fields of acoustics including noise, transduction, underwater acoustics, and physical acoustics.