Long‐Lived Photocharges in Supramoelcular Polymers of Low‐Bandgap Chromophores
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Organic semiconductor materials have been widely applied in optoelectronic devices to replace their inorganic counterparts and explore new fields of applications. Due to their high extinction coefficients, chemical tunability and solubility, cyanine dyes a ...
The first observation that PBBTPD, a low bandgap, ambipolar conjugated donor-acceptor (DA) polymer based on benzobisthiadiazole (BBT), possesses an open-shell singlet ground state as well as a thermally accessible triplet state is described. Similarly, int ...
Many practical applications among organic electronic devices have been demonstrated over the last decades. They are considered as promising alternatives to inorganic semiconductor technologies due to the potential of cost-effective fabrication, excellent p ...
The electroluminescence of organic films is the central aspect in organic light emitting diodes (OLEDs) and widely used in current display technology. However, its spatial variation on the molecular scale is essentially unexplored. Here, we address this is ...
To grow small molecule semiconductor thin films with domain size larger than modern-day device sizes, we evaporate the material through a dense array of small apertures, called a stencil nanosieve. The aperture size of 0.5 μm results in low nucleation dens ...
Organic thin-film transistors (TFTs) have undergone tremendous progress in the past few years. Their great potential in terms of mechanical flexibility, light weight, low-cost and large-area fabrication makes them promising candidates for novel electronic ...
The non-covalent interactions of neutral π-conjugated cores, pertinent to organic semiconductor materials, are intimately related to their charge transport properties and involve a subtle interplay of dispersion, Pauli repulsion and electrostatic contribut ...
Charge carrier and exciton trapping in organic semiconductors crucially determine the performance of organic (opto-)electronic devices such as organic field-effect transistors, light-emitting diodes, or solar cells. However, the microscopic origin of the r ...
The efficiency of charge carrier mobility in organic semiconductors is heavily dependent upon the long-range organization (i.e., morphology) and the local relative arrangement of the transporting molecules. Here, we exploit London dispersion forces as a de ...
A detailed understanding for the mechanisms that control degradation of the electrical performance of organic thin-film transistors (TFTs) during exposure to various environments, such as oxygen and humidity, is still developing. This is particularly true ...