Théorie des twisteursLa théorie des twisteurs, introduite par Roger Penrose dans les années 1970, ou plus précisément de « particules » se déplaçant à la vitesse de la lumière. Pour décrire un point de l'espace temps, la théorie imagine tous les rayons lumineux qui parviennent à ce point. Un paramètre doit par ailleurs être ajouté aux rayons lumineux : une hélicité. Finalement l'espace considéré et qui encode l'espace-temps, est de .
Éther (physique)En physique, le terme d'éther a recouvert plusieurs notions différentes selon les époques. Les différents éthers considérés par les physiciens sont « des substances subtiles distinctes de la matière et permettant de fournir ou transmettre des effets entre les corps ».
GrassmannienneEn mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou G(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». Pour k = 1, la grassmannienne est l'espace projectif associé à l'espace vectoriel.
Hermann Günther GrassmannHermann Günther Grassmann (né le à Stettin et mort le dans la même ville) est un mathématicien et indianiste prussien. Polymathe, il est connu de ses contemporains en tant que linguiste. Physicien, néo-humaniste, érudit mais aussi éditeur, Hermann Grassmann est avec Niels Abel, Évariste Galois et Georg Cantor l’un des grands mathématiciens « malheureux » du . Selon le mot de Albert C. Lewis : Il est considéré aujourd'hui comme le fondateur du calcul tensoriel et de la théorie des espaces vectoriels.