Stationnement automatiquevignette|Capteur ultrason utilisé par le stationnement automatique Le stationnement automatique est une aide à la conduite qui automatise des actions du conducteur durant une manœuvre de stationnement. Il existe trois types de systèmes de stationnement automatique : Le parking mains-libres, où le système prend le contrôle du volant et laisse le contrôle longitudinal (accélération, freinage) au conducteur. Le parking mains-libre freineur, où le système prend le contrôle du volant et du freinage, et laisse l'accélération au conducteur.
Assemblage de photosL'assemblage de photos est un procédé consistant à combiner plusieurs se recouvrant, dans le but de produire un panorama ou une image de haute définition. thumb|right|upright=2|alt=Exemple de détection de zones de recouvrement pour l'assemblage d'un panorama : une série de six images sont assemblées en panorama, une ligne rouge délimitant les zones de recouvrement.|Exemple de détection de zones de recouvrement pour l'assemblage d'un panorama. Photographie panoramique Panographie Catégorie:Vision artificiel
Lane centeringIn road-transport terminology, lane centering, also known as auto steer or autosteer, is an advanced driver-assistance system that keeps a road vehicle centered in the lane, relieving the driver of the task of steering. Lane centering is similar to lane departure warning and lane keeping assist, but rather than warn the driver, or bouncing the car away from the lane edge, it keeps the car centered in the lane. Together with adaptive cruise control (ACC), this feature may allow unassisted driving for some length of time.
Weak supervisionWeak supervision, also called semi-supervised learning, is a paradigm in machine learning, the relevance and notability of which increased with the advent of large language models due to large amount of data required to train them. It is characterized by using a combination of a small amount of human-labeled data (exclusively used in more expensive and time-consuming supervised learning paradigm), followed by a large amount of unlabeled data (used exclusively in unsupervised learning paradigm).
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Blob detectionIn computer vision, blob detection methods are aimed at detecting regions in a that differ in properties, such as brightness or color, compared to surrounding regions. Informally, a blob is a region of an image in which some properties are constant or approximately constant; all the points in a blob can be considered in some sense to be similar to each other. The most common method for blob detection is convolution.
Self-driving truckA self-driving truck, also known as an autonomous truck or robo-truck, is an application of self-driving technology aiming to create trucks that can operate without human input. Alongside light, medium, and heavy-duty trucks, many companies are developing self-driving technology in semi trucks to automate highway driving in the delivery process. In September 2022, Guidehouse Insights listed Waymo, Aurora, TuSimple, Gatik, PlusAI, Kodiak Robotics, Daimler Truck, Einride, Locomation, and Embark as the top 10 vendors in automated trucking.
Meta-learning (computer science)Meta learning is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing learning algorithms or to learn (induce) the learning algorithm itself, hence the alternative term learning to learn.
Text-to-image modelA text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Such models began to be developed in the mid-2010s, as a result of advances in deep neural networks. In 2022, the output of state of the art text-to-image models, such as OpenAI's DALL-E 2, Google Brain's , StabilityAI's Stable Diffusion, and Midjourney began to approach the quality of real photographs and human-drawn art.
Architecture cognitiveUne architecture cognitive est un processus calculatoire artificiel qui tente de simuler le comportement d'un système cognitif (généralement celui d'un humain), ou qui agit intelligemment sous respect d'une certaine définition. Le terme architecture implique une approche qui tente de modéliser les propriétés internes du système cognitif représenté et non seulement le comportement extérieur. Les prochaines sous-sections présentent plusieurs critères pour catégoriser les architectures cognitives.