Publication

Loops in AdS: from the spectral representation to position space

Din Carmi
2020
Article
Résumé

We compute a family of scalar loop diagrams in AdS. We use the spectral representation to derive various bulk vertex/propagator identities, and these identities enable to reduce certain loop bubble diagrams to lower loop diagrams, and often to tree- level exchange or contact diagrams. An important example is the computation of the finite coupling 4-point function of the large-N conformal O(N ) model on AdS(3). Remarkably, the re-summation of bubble diagrams is equal to a certain contact diagram: the D1,1,32,32zz function. Another example is a scalar with phi (4) or phi (3) coupling in AdS(3): we compute various 4-point (and higher point) loop bubble diagrams with alternating integer and half- integer scaling dimensions in terms of a finite sum of contact diagrams and tree-level exchange diagrams. The 4-point function with external scaling dimensions differences obeying (12) = 0 and (34) = 1 enjoys significant simplicity which enables us to compute in quite generality. For integer or half-integer scaling dimensions, we show that the M -loop bubble diagram can be written in terms of Lerch transcendent functions of the cross- ratios z and z. Finally, we compute 2-point bulk bubble diagrams with endpoints in the bulk, and the result can be written in terms of Lerch transcendent functions of the AdS chordal distance. We show that the similarity of the latter two computations is not a coincidence, but arises from a vertex identity between the bulk 2-point function and the double-discontinuity of the boundary 4-point function.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (45)
Diagramme de Feynman
upright=1.2|vignette|Diagramme de Feynman : un électron et un positron (e- et e+) s'annihilent en produisant un photon virtuel (en bleu) qui devient une paire quark-antiquark (q et q̄), puis l'antiquark émet un gluon (en vert). Le temps est ici en abscisse, de gauche à droite ; l'espace est en ordonnée.Les flèches symbolisent le type de l'objet (particules ">", vers le futur, et anti particule "
Scalar field theory
In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation. The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.
Constante de couplage
En physique, une constante de couplage est un nombre caractéristique de l'intensité d'une interaction. En physique classique les constantes de couplage interviennent en mécanique et en électromagnétisme : la constante de couplage de deux circuits linéaires, comme l'inductance mutuelle M d'un transformateur. Voir aussi l'article Couplage de deux oscillateurs électriques ; la constante de couplage de deux systèmes mécaniques, souvent notée k, caractérise leur dépendance l'un à l'autre.
Afficher plus
Publications associées (34)

On the Sums over Inverse Powers of Zeros of the Hurwitz Zeta Function and Some Related Properties of These Zeros

Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...
MDPI2024

Null energy constraints on two-dimensional RG flows

Grégoire Olivier Mathys

We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
New York2024

On the Use of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions for the Calculation of Infinite Sums and the Analysis of Zeroes of Analytical Functions

Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
MDPI2023
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.