Diagramme de Feynmanupright=1.2|vignette|Diagramme de Feynman : un électron et un positron (e- et e+) s'annihilent en produisant un photon virtuel (en bleu) qui devient une paire quark-antiquark (q et q̄), puis l'antiquark émet un gluon (en vert). Le temps est ici en abscisse, de gauche à droite ; l'espace est en ordonnée.Les flèches symbolisent le type de l'objet (particules ">", vers le futur, et anti particule "
Scalar field theoryIn theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation. The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.
Constante de couplageEn physique, une constante de couplage est un nombre caractéristique de l'intensité d'une interaction. En physique classique les constantes de couplage interviennent en mécanique et en électromagnétisme : la constante de couplage de deux circuits linéaires, comme l'inductance mutuelle M d'un transformateur. Voir aussi l'article Couplage de deux oscillateurs électriques ; la constante de couplage de deux systèmes mécaniques, souvent notée k, caractérise leur dépendance l'un à l'autre.
Quartic interactionIn quantum field theory, a quartic interaction is a type of self-interaction in a scalar field. Other types of quartic interactions may be found under the topic of four-fermion interactions. A classical free scalar field satisfies the Klein–Gordon equation. If a scalar field is denoted , a quartic interaction is represented by adding a potential energy term to the Lagrangian density. The coupling constant is dimensionless in 4-dimensional spacetime. This article uses the metric signature for Minkowski space.
Fonction zêta de LerchEn mathématiques, la fonction zêta de Lerch, ou fonction zêta de Hurwitz-Lerch est une fonction spéciale qui généralise la fonction zêta de Hurwitz et le polylogarithme, nommée d'après le mathématicien Mathias Lerch. Elle est définie comme somme d'une série comme suit : La fonction zêta de Lerch est reliée à la fonction transcendante de Lerch, définie par la formule : par l'identité : La fonction zêta de Hurwitz est un cas particulier, donnée par : Le polylogarithme est un cas particulier de la fonction zêt
Fonction multivaluéeframe|right|Ce diagramme représente une multifonction : à chaque élément de X on fait correspondre une partie de Y ; ainsi à l'élément 3 de X correspond la partie de Y formée des deux points b et c. En mathématiques, une fonction multivaluée (aussi appelée correspondance, fonction multiforme, fonction multivoque ou simplement multifonction) est une relation binaire quelconque, improprement appelée fonction car non fonctionnelle : à chaque élément d'un ensemble elle associe, non pas au plus un élément mais possiblement zéro, un ou plusieurs éléments d'un second ensemble.
Beta function (physics)In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as and, because of the underlying renormalization group, it has no explicit dependence on μ, so it only depends on μ implicitly through g. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques.
Fonction zêta de Hurwitzvignette|Fonction zêta de Hurwitz En mathématiques, la fonction zêta de Hurwitz est une des nombreuses fonctions zêta. Elle est définie, pour toute valeur q du paramètre, nombre complexe de partie réelle strictement positive, par la série suivante, convergeant vers une fonction holomorphe sur le demi-plan des complexes s tels que Re(s) > 1 : Par prolongement analytique, s'étend en une fonction méromorphe sur le plan complexe, d'unique pôle s = 1. est la fonction zêta de Riemann. où Γ désigne la fonction Gamma.
Point d'ébullitionLe point d'ébullition d'un liquide est, pour une pression donnée, la température à partir de laquelle il passe de l'état liquide à l'état gazeux s'il reçoit de la chaleur ; il entre alors en ébullition. Le point de condensation est le processus inverse, se produisant à la même température, auquel la vapeur se condense en fournissant de la chaleur. Le point d'ébullition « standard » d'un liquide est celui mesuré à une pression d'une atmosphère.
Point de fusionvignette|Un panneau routier québécois rappelle le point de congélation de l'eau à . Le point de fusion (ou la température de fusion) d'un corps pur ou d'un eutectique est, à une pression donnée, la température à laquelle les états liquide et solide de cette substance peuvent coexister à l'équilibre. Si l'on chauffe la substance (initialement solide), elle fond à cette température et la température ne peut pas augmenter tant que tout le solide n'a pas disparu.