Ensemble finiEn mathématiques, un ensemble fini est un ensemble qui possède un nombre fini d'éléments, c'est-à-dire qu'il est possible de compter ses éléments, le résultat étant un nombre entier. Un ensemble infini est un ensemble qui n'est pas fini. Ainsi l'ensemble des chiffres usuels (en base dix) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} qui possède 10 éléments, est fini. De même l'ensemble des lettres de l'alphabet qui possède 26 éléments. L'ensemble de tous les nombres entiers naturels {0, 1, 2, 3,..., 10,..., 100,...
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Énergie des vaguesL'énergie des vagues, ou énergie houlomotrice, est une énergie marine utilisant l'énergie contenue dans le mouvement de la houle, soit les oscillations de la surface de l'eau. Cette énergie ne doit pas être confondue avec l'énergie marémotrice, laquelle utilise l'énergie des marées. La faisabilité de son exploitation a été étudiée, en particulier au Portugal, au Royaume-Uni et en Australie.
Symmetric probability distributionIn statistics, a symmetric probability distribution is a probability distribution—an assignment of probabilities to possible occurrences—which is unchanged when its probability density function (for continuous probability distribution) or probability mass function (for discrete random variables) is reflected around a vertical line at some value of the random variable represented by the distribution. This vertical line is the line of symmetry of the distribution.
Airy wave theoryIn fluid dynamics, Airy wave theory (often referred to as linear wave theory) gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.
Loi de probabilité marginaleEn théorie des probabilités et en statistique, la loi marginale d'un vecteur aléatoire, c'est-à-dire d'une variable aléatoire à plusieurs dimensions, est la loi de probabilité d'une de ses composantes. Autrement dit, la loi marginale est une variable aléatoire obtenue par « projection » d'un vecteur contenant cette variable. Par exemple, pour un vecteur aléatoire , la loi de la variable aléatoire est la deuxième loi marginale du vecteur. Pour obtenir la loi marginale d'un vecteur, on projette la loi sur l'espace unidimensionnel de la coordonnée recherchée.
État de la mervignette|Mer calme à mer ridée (Øresund) : pas ou peu d'ondulation, phénomène de miroir (on parle aussi de mer d'huile) vignette|Mer belle (Sables d'Olonne) : ondulation sans moutonnements vignette|Mer peu agitée à mer agitée (Collioure), des moutonnements se forment, leur nombre augmente avec l'intensité du vent. vignette|Mer grosse et mer forte (port de Penhors) suivant l'intensité des vagues (hauteur) : mer blanchie par l'écume. L'état de la mer est la description de la surface de la mer soumise à l'influence du vent (qui génère le système de vagues) et de la houle.
Statistical model validationIn statistics, model validation is the task of evaluating whether a chosen statistical model is appropriate or not. Oftentimes in statistical inference, inferences from models that appear to fit their data may be flukes, resulting in a misunderstanding by researchers of the actual relevance of their model. To combat this, model validation is used to test whether a statistical model can hold up to permutations in the data.
Statistical model specificationIn statistics, model specification is part of the process of building a statistical model: specification consists of selecting an appropriate functional form for the model and choosing which variables to include. For example, given personal income together with years of schooling and on-the-job experience , we might specify a functional relationship as follows: where is the unexplained error term that is supposed to comprise independent and identically distributed Gaussian variables.
AmplitudeEn physique classique, on nomme amplitude la mesure scalaire (une coordonnée) d’un nombre positif caractérisant l’ampleur des variations d'une grandeur. Le plus souvent il s'agit de l'écart maximal par rapport à la valeur médiane (qui est aussi la valeur moyenne si la variation est symétrique). Cette définition diffère du langage courant, dans lequel l'amplitude désigne généralement l'écart entre les valeurs extrêmes d'une grandeur.