Kernel (linear algebra)In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically: The kernel of L is a linear subspace of the domain V.
Postulats de la mécanique quantiquevignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Produit dyadiqueEn mathématiques, et plus précisément en algèbre multilinéaire, le produit dyadique de deux vecteurs, et , chacun ayant la même dimension, est le produit tensoriel de ces vecteurs, lequel est un tenseur d'ordre deux et de rang un. Si et sont deux vecteurs d'un espace vectoriel E de dimension finie n, muni d'une base donnée , les coordonnées du produit dyadique dans la base correspondante du produit tensoriel sont données par où , et , et alors Le produit dyadique peut être simplement représenté par la matrice carrée obtenue en multipliant en tant que vecteur colonne par en tant que vecteur ligne.
Operator associativityIn programming language theory, the associativity of an operator is a property that determines how operators of the same precedence are grouped in the absence of parentheses. If an operand is both preceded and followed by operators (for example, ^ 3 ^), and those operators have equal precedence, then the operand may be used as input to two different operations (i.e. the two operations indicated by the two operators). The choice of which operations to apply the operand to, is determined by the associativity of the operators.
Associativité des puissancesEn algèbre, l'associativité des puissances est une forme affaiblie de l'associativité. Un magma est dit associatif des puissances si le sous-magma engendré par n'importe quel élément est associatif. Concrètement, cela signifie que si une opération est effectuée plusieurs fois sur un même élément , l'ordre dans lequel sont effectuées ces opérations n'a pas d'importance ; ainsi, par exemple, . Tout magma associatif est évidemment associatif des puissances.
Loi commutativeEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne sur un ensemble E est dite commutative si pour tous x et y dans E, En notant , la commutativité se traduit par le diagramme commutatif suivant : Fichier:Commutativité.png Les exemples les plus simples de lois commutatives sont sans doute l'addition et la multiplication des entiers naturels. L'addition et la multiplication des nombres réels et des nombres complexes, l'addition des vecteurs, l'intersection et la réunion des ensembles sont également des lois commutatives.