Concept

Associativité des puissances

En algèbre, l'associativité des puissances est une forme affaiblie de l'associativité. Un magma est dit associatif des puissances si le sous-magma engendré par n'importe quel élément est associatif. Concrètement, cela signifie que si une opération est effectuée plusieurs fois sur un même élément , l'ordre dans lequel sont effectuées ces opérations n'a pas d'importance ; ainsi, par exemple, . Tout magma associatif est évidemment associatif des puissances. Si un magma est associatif des puissances alors pour tout élément de , mais la réciproque est fausse (contre-exemple : avec définie par ). mais une algèbre alternative l'est, comme celle des octonions. Certaines algèbres non alternatives le sont également, comme celle des sédénions. L'exponentiation à une puissance d'entier naturel différent de zéro peut être définie de manière cohérente si la multiplication est associative des puissances. Par exemple, il n'y a pas d'ambiguïté que x3 soit défini comme (xx)x ou x(xx), car les deux sont égaux. L'exponentiation à une puissance de zéro peut également être définie si l'opération possède un élément neutre : l'existence de tels éléments est ainsi particulièrement utile dans les contextes où l'associativité des puissances est vérifiée. Une loi de substitution remarquable est valable dans les algèbres (sur un anneau commutatif) associatives des puissances, avec élément neutre. Elle affirme que la multiplication des polynômes fonctionne comme attendu. Soient f et g deux polynômes à coefficients dans l'anneau. Pour tout élément a d'une telle algèbre, nous avons (fg)(a) = f(a)g(a).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.