Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Single-cell transcriptomics enables the measurement of gene expression in complex biological systems at the resolution of individual cells. Multivariate analysis of single-cell data helps describe the variation in expression accompanying cellular processes during embryonic development, disease progression and in response to stimuli. Likewise, new methods have extended the possibilities of single-cell analysis by measuring the transcriptome while simultaneously capturing information on lineage or past molecular events. These emerging approaches have the common strategy of querying a static snapshot for information related to different temporal stages. Single-cell temporal-omics methods open new possibilities such as extrapolating the future or correlating past events to present gene expression. We highlight advancements in the single-cell field, describe novel toolkits for investigation, and consider the potential impact of temporal-omics approaches for the study of disease progression.
Vassily Hatzimanikatis, Georgios Fengos, Maria Masid Barcon, Daniel Robert Weilandt, Zhaleh Hosseini, Pierre Guy Rémy Salvy
Didier Trono, Evaristo Jose Planet Letschert, Julien Léonard Duc, Alexandre Coudray, Julien Paul André Pontis, Delphine Yvette L Grun, Cyril David Son-Tuyên Pulver, Shaoline Sheppard