Fountain codeIn coding theory, fountain codes (also known as rateless erasure codes) are a class of erasure codes with the property that a potentially limitless sequence of encoding symbols can be generated from a given set of source symbols such that the original source symbols can ideally be recovered from any subset of the encoding symbols of size equal to or only slightly larger than the number of source symbols. The term fountain or rateless refers to the fact that these codes do not exhibit a fixed code rate.
Error exponentIn information theory, the error exponent of a channel code or source code over the block length of the code is the rate at which the error probability decays exponentially with the block length of the code. Formally, it is defined as the limiting ratio of the negative logarithm of the error probability to the block length of the code for large block lengths. For example, if the probability of error of a decoder drops as , where is the block length, the error exponent is . In this example, approaches for large .
Typical setIn information theory, the typical set is a set of sequences whose probability is close to two raised to the negative power of the entropy of their source distribution. That this set has total probability close to one is a consequence of the asymptotic equipartition property (AEP) which is a kind of law of large numbers. The notion of typicality is only concerned with the probability of a sequence and not the actual sequence itself.
Majorité qualifiéeLa majorité qualifiée est une part spécifique des votes qu'une proposition doit obtenir afin d'être acceptée. Elle s'oppose alors à la minorité de blocage, qui permet, avec moins de la moitié des voix, de bloquer une décision. Elle se distingue de la majorité absolue par le fait qu'elle peut être à la base beaucoup plus large. En effet, une simple majorité absolue requiert au minimum la moitié des voix plus une.