Towards neural network approaches for point cloud compression
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Single-photon 3D cameras can record the time-of-arrival of billions of photons per second with picosecond accuracy. One common approach to summarize the photon data stream is to build a per-pixel timestamp histogram, resulting in a 3D histogram tensor that ...
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
The demand for data storage has grown exponentially over the past decades. Current archival solutions have significant shortcomings, such as high resource requirements and a lack of sufficient longevity. In contrast, research on DNA-based storage has been ...
The mechanical performance-including deformation, fracture and radiation damage-of zirconium is determined at the atomic scale. With Zr and its alloys extensively used in the nuclear industry, understanding that atomic scale behavior is crucial. The defect ...
Learning-based image coding has shown promising results during recent years. Unlike the traditional approaches to image compression, learning-based codecs exploit deep neural networks for reducing dimensionality of the input at the stage where a linear tra ...
In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep ...
Nowadays, image and video are the data types that consume most of the resources of modern communication channels, both in fixed and wireless networks. Thus, it is vital to compress visual data as much as possible, while maintaining some target quality leve ...
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
Recent advancements in acquisition of three-dimensional models have been increasingly drawing attention to imaging modalities based on the plenoptic representations, such as light fields and point clouds. Since point cloud models can often contain millions ...
Point cloud representation is a popular modality to code immersive 3D contents. Several solutions and standards have been recently proposed in order to efficiently compress the large volume of data that point clouds require, in order to make them feasible ...