Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Scalar field theoryIn theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation. The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Théorie de jauge sur réseauLa théorie de jauge sur réseau est une branche de la physique théorique, consistant à étudier les propriétés d'une théorie de jauge sur un modèle discret d’espace-temps, caractérisé mathématiquement comme un réseau. Les théories de jauge jouent un rôle fondamental en physique des particules, puisqu'elles unifient les théories actuellement reçues sur les particules élémentaires : l’électrodynamique quantique, la chromodynamique quantique (QCD) et le « Modèle standard ».
Chromodynamique quantique sur réseauLa chromodynamique quantique sur réseau est une approche non-perturbative de la chromodynamique quantique (QCD) qui se base sur une discrétisation de l'espace-temps. C'est une théorie de jauge sur réseau formulée sur une grille ou réseau de points dans l'espace et le temps. Lorsqu'on fait tendre la taille du réseau vers l'infini et la maille du réseau vers zéro, on retrouve le continuum de la QCD. Il est difficile, voire impossible de trouver des solutions analytiques ou perturbatives de la QCD à basses énergies, de par la nature hautement non-linéaire de la force forte.
LuxonUn luxon est une particule se déplaçant, lorsqu'elle est dans le vide, uniquement à c, vitesse de la lumière dans le vide. Un luxon a une masse au repos nulle. Cependant, il ne faut pas attribuer trop de sens à cette propriété ; puisque dans la définition d'un luxon il y a la notion de vitesse, un luxon n'est jamais au repos. Dans son cas, la masse au repos n'est qu'un intermédiaire de calcul. L'énergie d'un luxon n'est pas nulle, car la formule E=mc ne donne que l'énergie au repos.
Introduction to gauge theoryA gauge theory is a type of theory in physics. The word gauge means a measurement, a thickness, an in-between distance (as in railroad tracks), or a resulting number of units per certain parameter (a number of loops in an inch of fabric or a number of lead balls in a pound of ammunition). Modern theories describe physical forces in terms of fields, e.g., the electromagnetic field, the gravitational field, and fields that describe forces between the elementary particles.
Champ électromagnétiqueUn champ électromagnétique ou Champ EM (en anglais, electromagnetic field ou EMF) est la représentation dans l'espace de la force électromagnétique qu'exercent des particules chargées. Concept important de l'électromagnétisme, ce champ représente l'ensemble des composantes de la force électromagnétique s'appliquant sur une particule chargée se déplaçant dans un référentiel galiléen. Une particule de charge q et de vecteur vitesse subit une force qui s'exprime par : où est le champ électrique et est le champ magnétique.
Théorie effectiveLa théorie quantique des champs fournit une procédure systématique permettant de calculer de façon perturbative toutes les observables d'une théorie (c'est-à-dire les fonctions de corrélation entre les différents opérateurs quantifiés de la théorie) étant donné son Lagrangien microscopique. Les degrés de liberté de la théorie étant classés selon leur masse, il apparaît que pour des énergies d'observation faibles, la contribution dominante aux observables provient des excitations les plus légères (on dit que seuls ces degrés de liberté sont visibles) et que la contribution des excitations plus massives joue le rôle de correction au résultat fourni par les excitations visibles.
Chromodynamique quantiqueLa chromodynamique quantique (en abrégé CDQ ou QCD, ce dernier de l'anglais Quantum ChromoDynamics) est une théorie physique qui décrit l’interaction forte, l’une des quatre forces fondamentales, qui permet de comprendre les interactions entre les quarks et les gluons et, au passage, la cohésion du noyau atomique. Elle fut proposée en 1973 par H. David Politzer, Frank Wilczek et David Gross pour comprendre la structure des hadrons (c'est-à-dire d'une part les baryons comme les protons, neutrons et particules similaires, et d'autre part les mésons).