Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Fonction gaussiennevignette|Fonction gaussienne pour μ = 0, σ = 1 ; courbe centrée en zéro. Une fonction gaussienne est une fonction en exponentielle de l'opposé du carré de l'abscisse (une fonction en exp(-x)). Elle a une forme caractéristique de courbe en cloche. L'exemple le plus connu est la densité de probabilité de la loi normale où μ est l'espérance mathématique et σ est l'écart type. Les fonctions gaussiennes sont analytiques, de limite nulle en l'infini. La largeur à mi-hauteur H vaut la demi-largeur à mi-hauteur vaut donc environ 1,177·σ.
Moyenne quasi-arithmétiqueEn mathématiques et en statistiques, les moyennes quasi-arithmétiques, ou moyennes de Kolmogorov ou encore moyennes selon une fonction f constituent une généralisation de la moyenne (de Hölder) d'ordre p (qui est elle-même une généralisation des moyennes usuelles : arithmétique, géométrique). Elles sont paramétrées par une fonction f. Soit une fonction d'un intervalle dans les nombres réels, continue et injective. La moyenne selon la fonction f des nombres est définie par , que l'on peut aussi écrire Il est nécessaire que soit injective pour que son inverse soit définie.
Distance de TchebychevLa distance de Tchebychev, distance de Chebyshev ou ∞-distance, est la distance entre deux points donnée par la différence maximale entre leurs coordonnées sur une dimension. La distance de Tchebychev tient son nom du mathématicien russe Pafnouti Tchebychev. Entre deux points A et B, de coordonnées respectives et , la distance de Tchebychev est définie par : Autrement dit : c'est la distance associée à la norme « infini ». La distance de Tchebychev est équivalente à la d'ordre infini.