**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# A Sensor Fusion Approach to the Estimation of Instantaneous Velocity Using Single Wearable Sensor During Sprint

Résumé

Power-Force-Velocity profile obtained during a sprint test is crucial for designing personalized training and evaluating injury risks. Estimation of instantaneous velocity is requisite for developing these profiles and the predominant method for this estimation assumes it to have a first order exponential behavior. While this method remains appropriate for maximal sprints, the sprint velocity profile may not always show a first-order exponential behavior. Alternately, velocity profile has been estimated using inertial sensors, with a speed radar, or a smartphone application. Existing methods either relied on the exponential behavior or timing gates for drift removal, or estimated only the mean velocity. Thus, there is a need for a more flexible and appropriate approach, allowing for instantaneous velocity estimation during sprint tests. The proposed method aims to solve this problem using a sensor fusion approach, by combining the signals from wearable Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) sensors. We collected data from nine elite sprinters, equipped with a wearable GNSS-IMU sensor, who ran two trials each of 60 and 30/40 m sprints. We developed an algorithm using a gradient descent-based orientation filter, which simplified our model to a linear one-dimensional model, thus allowing us to use a simple Kalman filter (KF) for velocity estimation. We used two cascaded KFs, to segment the sprint data precisely, and to estimate the velocity and the sprint duration, respectively. We validated the estimated velocity and duration with speed radar and photocell data as reference. The median RMS error for the estimated velocity ranged from 6 to 8%, while that for the estimated sprint duration lied between 0.1 and -6.0%. The Bland-Altman plot showed close agreement between the estimated and the reference values of maximum velocity. Examination of fitting errors indicated a second order exponential behavior for the sprint velocity profile, unlike the first order behavior previously suggested in literature. The proposed sensor-fusion algorithm is valid to compute an accurate velocity profile with respect to the radar; it can compensate for and improve upon the accuracy of the individual IMU and GNSS velocities. This method thus enables the use of wearable sensors in the analysis of sprint test.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (21)

Centrale à inertie

thumb|Gyrolaser de forme triangulaire, technologie de gyromètre couramment utilisée dans les centrales à inertie.
Une centrale à inertie ou centrale inertielle est un instrument utilisé en navigation

Algorithme

thumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation).
Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de

Vecteur vitesse

Le vecteur vitesse, nommé parfois vélocité, est une notion de physique qui à la différence de la vitesse comprend un déplacement vers un point. Par exemple, une voiture a une vitesse de 60 km/h mais

Publications associées (18)

Chargement

Chargement

Chargement

The trends in the design of image sensors are to build sensors with low noise, high sensitivity, high dynamic range, and small pixel size. How can we benefit from pixels with small size and high sensitivity? In this dissertation, we study a new image sensor that is reminiscent of traditional photographic film. Each pixel in the sensor has a binary response, giving only a one-bit quantized measurement of the local light intensity. The response function of the image sensor is non-linear and similar to a logarithmic function, which makes the sensor suitable for high dynamic range imaging. We first formulate the oversampled binary sensing scheme as a parameter estimation problem based on quantized Poisson statistics. We show that, with a single-photon quantization threshold and large oversampling factors, the Cramér-Rao lower bound (CRLB) of the estimation variance approaches that of an ideal unquantized sensor, that is, as if there were no quantization in the sensor measurements. Furthermore, the CRLB is shown to be asymptotically achievable by the maximum likelihood estimator (MLE). By showing that the log-likelihood function is concave, we guarantee the global optimality of iterative algorithms in finding the MLE. We study the performance of the oversampled binary sensing scheme in presence of dark current noise. The noise model is an additive Bernoulli noise with a known parameter, and the noise only flips the binary output from "0" to "1". We show that the binary sensor is quite robust with respect to noise and its dynamic range is only slightly reduced. The binary sensor first benefits from the increasing of the oversampling factor and then suffers in term of dynamic range. We again use the MLE to estimate the light intensity. When the threshold is a single photon, we show that the log-likelihood function is still concave. Thus, the global optimality can be achieved. But for thresholds larger than "1", this property does not hold true. By proving that when the light intensity is piecewise-constant, the likelihood function is a strictly pseudoconcave function, we guarantee to find the optimal solution of the MLE using iterative algorithms for arbitrary thresholds. For the general linear light field model, the log-likelihood function is not even quasiconcave when thresholds are larger than "1". In this circumstance, we find an initial solution by approximating the light intensity field with a piecewise-constant model, and then we use Newton's method to refine the estimation using the exact model. We then examine one of the most important parameters in the binary sensor, i.e., the threshold used to generate binary values. We prove the intuitive result that large thresholds achieve better estimation performance for strong light intensities, while small thresholds work better for low light intensities. To make a binary sensor that works in a larger range of light intensities, we propose to design a threshold array containing multiple thresholds instead of a single threshold for the binary sensing. The criterion is to minimize the average CRLB which is a good approximation of the mean squared error (MSE). The performance analysis on the new binary sensor verifies the effectiveness of our design. Again, the MLE is used for reconstructing the light intensity field from the binary measurements. By showing that the log-likelihood function is concave for arbitrary threshold arrays, we ensure that the iterative algorithms can find the optimal solution of the MLE. Finally, we study the reconstruction problem for the binary image sensor under a generalized piecewise-constant light intensity field model, which is quite useful when parameters like oversampling factors are unknown. We directly estimate light exposure values, i.e., the number of photons hitting on each pixel. We assume that the light exposure values are piecewise-constant and we use the MLE for the reconstruction. This optimization problem is solved by iteratively working out two subproblems. The first one is to find the optimal light exposure value for each segment, given the optimal segmentation of the binary measurements. The second one is to find the optimal segmentation of the binary measurements given the optimal light exposure values for each segment. Several algorithms are provided for solving this optimization problem. Dynamic programming can obtain the optimal solution for 1-D signals, but the computation is quite heavy. To reduce the burden of computation, we propose a greedy algorithm and a method based on pruning of binary trees or quadtrees.

Vision sensor networks and video cameras find widespread usage in several applications that rely on effective representation of scenes or analysis of 3D information. These systems usually acquire multiple images of the same 3D scene from different viewpoints or at different time instants. Therefore, these images are generally correlated through displacement of scene objects. Efficient compression techniques have to exploit this correlation in order to efficiently communicate the 3D scene information. Instead of joint encoding that requires communication between the cameras, in this thesis we concentrate on distributed representation, where the captured images are encoded independently, but decoded jointly to exploit the correlation between images. One of the most important and challenging tasks relies in estimation of the underlying correlation from the compressed correlated images for effective reconstruction or analysis in the joint decoder. This thesis focuses on developing efficient correlation estimation algorithms and joint representation of multiple correlated images captured by various sensing methodologies, e.g., planar, omnidirectional and compressive sensing (CS) sensors. The geometry of the 2D visual representation and the acquisition complexity vary for each sensor type. Therefore, we need to carefully consider the specific geometric nature of the captured images while developing distributed representation algorithms. In this thesis we propose robust algorithms in different scene analysis and reconstruction scenarios. We first concentrate on the distributed representation of omnidirectional images captured by catadioptric sensors. The omnidirectional images are captured from different viewpoints and encoded independently with a balanced rate distribution among the different cameras. They are mapped on the sphere which captures the plenoptic function in its radial form without Euclidean discrepancies. We propose a transform-based distributed coding algorithm, where the spherical images initially undergo a multi-resolution decomposition. The visual information is then split into two correlated partitions. The encoder transmits one partition after entropy coding, as well as the syndrome bits resulting from the Slepian-Wolf encoding of the other partition. The joint decoder estimates a disparity image to take benefit of the correlation between views and uses the syndrome bits to decode the missing information. Such a strategy proves to be beneficial with respect to the independent processing of images and shows only a small performance loss compared to the joint encoding of different views. The encoding complexity in the previous approach is non-negligible due to the visual information processing based on Slepian-Wolf coding and its associated rate parameter estimation. We therefore discard the Slepian-Wolf encoding and propose a distributed coding solution, where the correlated images are encoded independently using transform-based coding solutions (e.g., SPIHT). The central decoder now builds a correlation model from the compressed images, which is used to jointly decode a pair of images. Experimental results demonstrate that the proposed distributed coding solution improves the rate-distortion performance of the separate coding results for both planar and omnidirectional images. However, this improvement is significant only at medium to high bit rates. We therefore propose a rate allocation scheme that identifies and transmits the necessary visual information from each image to improve the correlation estimation accuracy at low bit rate. Experimental results show that for a given bit budget the proposed encoding scheme permits to compute an accurate correlation estimation comparing to the one obtained with SPIHT, JPEG 2000 or JPEG coding schemes. We show however that the improvement in the correlation estimation comes at the price of penalizing the image reconstruction quality; therefore there exists an interesting trade-off between the accurate correlation estimation and image reconstruction as encoding optimization objectives are different in both cases. Next, we further simplify the encoding complexity by replacing the classical imaging sensors with the simple CS sensors, that directly acquire the compressed images in the form of quantized linear measurements. We now concentrate on the particular problem, where one image is selected as the reference and it is used as a side information for the correlation estimation. We propose a geometry-based model to describe the correlation between the visual information in a pair of images. The joint decoder first captures the most prominent visual features in the reconstructed reference image using geometric functions. Since the images are correlated, these features are likely to be present in the other images too, possibly with geometric transformations. Hence, we propose to estimate the correlation model with a regularized optimization problem that locates these features in the compressed images. The regularization terms enforce smoothness of the transformation field, and consistency between the estimated images and the quantized measurements. Experimental results show that the proposed scheme is able to efficiently estimate the correlation between images for several multi-view and video datasets. The proposed scheme is finally shown to outperform DSC schemes based on unsupervised disparity (or motion) learning, as well as independent coding solutions based on JPEG 2000. We then extend the previous scenario to a symmetric decoding problem, where we are interested to estimate the correlation model directly from the quantized linear measurements without explicitly reconstructing the reference images. We first show that the motion field that represents the main source of correlation between images can be described as a linear operator. We further derive a linear relationship between the correlated measurements in the compressed domain. We then derive a regularized cost function to estimate the correlation model directly in the compressed domain using graph-based optimization algorithms. Experimental results show that the proposed scheme estimates an accurate correlation model among images in both multi-view and video imaging scenarios. We then propose a robust data fidelity term that improves the quality of the correlation estimation when the measurements are quantized. Finally, we show by experiments that the proposed compressed correlation estimation scheme is able to compete the solution of a scheme that estimates a correlation model from the reconstructed images without the complexity of image reconstruction. Finally, we study the benefit of using the correlation information while jointly reconstructing the images from the compressed linear measurements. We consider both the asymmetric and symmetric scenarios described previously. We propose joint reconstruction methodologies based on a constrained optimization problem which is solved using effective proximal splitting methods. The constraints included in our framework enforce the reconstructed images to satisfy both the correlation and the quantized measurements consistency objectives. Experimental results demonstrate that the proposed joint reconstruction scheme improves the quality of the decoded images, when compared to a scheme where the images are handled independently. In this thesis we build efficient distributed scene representation algorithms for the multiple correlated images captured in planar, omnidirectional and CS cameras. The coding rate in our symmetric distributed coding solution stays balanced between the encoders and stays close to the joint encoding solutions. Our novel algorithms lead to effective correlation estimation in different sensing and coding scenarios. In addition, we provide innovative solutions for robust correlation estimation from highly compressed images in simple sensing frameworks. Our CS-based joint reconstruction frameworks effectively exploit the inter-view correlation, that permits to achieve high compression gains compared to state-of-the-art independent and distributed coding solutions.

A sensor is a device that detects or measures a physical property and records, indicates, or otherwise responds to it. In other words, a sensor allows us to interact with the surrounding environment, by measuring qualitatively or quantitatively a given phenomena. Biological evolution provided every living entity with a set of sensors to ease the survival to daily challenges. In addition to the biological sensors, humans developed and designed “artificial” sensors with the aim of improving our capacity of sensing the real world. Today, thanks to technological developments, sensors are ubiquitous and thus, we measure an exponentially growing amount of data. Here is the challenge—how do we process and use this data? Nowadays, it is common to design real-world sensing architectures that use the measured data to estimate certain parameters of the measured physical field. This type of problems are known in mathematics as inverse problems and finding their solution is challenging. In fact, we estimate a set of parameters of a physical field with possibly infinite degrees of freedom with only a few measurements, that are most likely corrupted by noise. Therefore, we would like to design algorithms to solve the given inverse problem, while ensuring the existence of the solution, its uniqueness and its robustness to the measurement noise. In this thesis, we tackle different inverse problems, all inspired by real-world applications. First, we propose a new regularization technique for linear inverse problems based on the sensor placement optimization of the sensor network collecting the data. We propose Frame- Sense, a greedy algorithm inspired by frame theory that finds a near-optimal sensor placement with respect to the reconstruction error of the inverse problem solution in polynomial time. We substantiate our theoretical findings with numerical simulations showing that our method improves the state of the art. In particular, we show significant improvements on two realworld applications: the thermal monitoring of many-core processors and the adaptive sampling scheduling of environmental sensor networks. Second, we introduce the dual of the sensor placement problem, namely the source placement problem. In this case, instead of regularizing the inverse problem, we enable a precise control of the physical field by means of a forward problem. For this problem, we propose a near-optimal algorithm for the noiseless case, that is when we know exactly the current state of the physical field. Third, we consider a family of physical phenomena that can be modeled by means of graphs, where the nodes represent a set of entities and the edges model the transmission delay of an information between the entities. Examples of this phenomena are the spreading of a virus within the population of a given region or the spreading of a rumor on a social network. In this scenario, we identify two new key problems: the source placement and vaccination. For the former, we would like to find a set of sources such that the spreading of the information over the network is as fast as possible. For the latter, we look for an optimal set of nodes to be “vaccinated” such that the spreading of the virus is the slowest. For both problems, we propose greedy algorithms directly optimizing the average time of infection of the network. Such algorithms out-perform the current state of the art and we evaluate their performance with a set of experiments on synthetic datasets. Then, we discuss three distinct inverse problems for physical fields characterized by a diffusive phenomena, such as temperature of solid bodies or the dispersion of pollution in the atmosphere. We first study the uniform sampling and reconstruction of diffusion fields and we show that we can exploit the kernel of the field to control and bound the aliasing error. Second, we study the source estimation of a diffusive field given a set of spatio-temporal measurements of the field and under the assumption that the sources can be modeled as a set of Dirac’s deltas. For this estimation problem, we propose an algorithm that exploits the eigenfunctions representation of the diffusion field and we show that this algorithm recovers the sources precisely. Third, we propose an algorithm for the estimation of time-varying emissions of smokestacks from the data collected in the surrounding environment by a sensor network, under the assumption that the emission rates can be modeled as signals lying on low-dimensional subspaces or with a finite rate of innovation. Last, we analyze a classic non-linear inverse problem, namely the sparse phase retrieval. In such a problem, we would like to estimate a signal from just the magnitude of its Fourier transform. Phase retrieval is of interest for many scientific applications, such as X-ray crystallography and astronomy. We assume that the signal of interest is spatially sparse, as it happens for many applications, and we model it as a linear combination of Dirac’s delta. We derive sufficient conditions for the uniqueness of the solution based on the support of the autocorrelation function of the measured sparse signal. Finally, we propose a reconstruction algorithm for the sparse phase retrieval taking advantage of the sparsity of the signal of interest.