A deep learning framework for matching of SAR and optical imagery
Publications associées (45)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The success of deep learning may be attributed in large part to remarkable growth in the size and complexity of deep neural networks. However, present learning systems raise significant efficiency concerns and privacy: (1) currently, training systems are l ...
Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
Image super-resolution is a classic ill-posed computer vision and image processing problem, addressing the question of how to reconstruct a high-resolution image from its low-resolution counterpart. Current state-of-the-art methods have improved the perfor ...
Artificial intelligence has been an ultimate design goal since the inception of computers decades ago. Among the many attempts towards general artificial intelligence, modern machine learning successfully tackles many complex problems thanks to the progres ...
We address the detection, tracking, and relative localization of the agents of a drone swarm from a human perspective using a headset equipped with a single camera and an Inertial Measurement Unit (IMU). We train and deploy a deep neural network detector o ...
Deep neural networks have been empirically successful in a variety of tasks, however their theoretical understanding is still poor. In particular, modern deep neural networks have many more parameters than training data. Thus, in principle they should over ...
Stereo reconstruction is a problem of recovering a 3d structure of a scene from a pair of images of the scene, acquired from different viewpoints. It has been investigated for decades and many successful methods were developed.The main drawback of these ...
The explosive growth of machine learning in the age of data has led to a new probabilistic and data-driven approach to solving very different types of problems. In this paper we study the feasibility of using such data-driven algorithms to solve classic ph ...
Recent developments in speech emotion recognition (SER) often leverage deep neural networks (DNNs). Comparing and benchmarking different DNN models can often be tedious due to the use of different datasets and evaluation protocols. To facilitate the proces ...
Deep neural networks often have millions of parameters. This can hinder their deployment to low-end devices, not only due to high memory requirements but also because of increased latency at inference. We propose a novel model compression method that gener ...