Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this work, we demonstrate a new thermal management approach for direct cooling of GaN-on-Si power integrated circuits (ICs), in which the Si substrate functions as a microfluidic heat sink, turning Si into a cost-effective, high thermal performance substrate. Flowing coolant through microchannels etched in the backside of the substrate enables a much denser integration of GaN power devices in a single chip. As a proof of concept, an integrated full-wave bridge rectifier (FWBR) was realized based on high-performance tri-anode GaN Schottky barrier diodes (SBDs), together with a novel hybrid printed circuit board (PCB) that provides fluidic and electric connections to the liquid-cooled power IC. A device-level heat flux of 417 W/cm 2 was cooled using only 60 mW of pumping power. Compared to natural-convection air-cooling, the temperature rise was reduced by 98% and the converter output power was increased by 30 times, up to 120 W, by eliminating self-heating degradation. The high cooling efficiency, large heat extraction capabilities and low-cost fabrication process of embedded microchannels on GaN-on-Si, in combination with new PCB-based coolant delivery, can be an enabling technology for the next generation of ultra-high power-density ICs.
Danick Briand, Rubaiyet Iftekharul Haque