Communication non verbaleLa communication non verbale (ou langage du corps) désigne tout échange n'ayant pas recours à la parole. Elle ne repose pas sur les mots (pratiques linguistiques), mais sur plusieurs champs extralinguistiques correspondant à des signaux sociaux ou catégories fonctionnelles, objets d'études de différentes disciplines : communication para-verbale (communication vocale comprenant les traits prosodiques, les onomatopées, le rire, la toux, et parfois distinguée de la communication non verbale) analysée par la , gestes (mouvements du corps, gestuelle, actions et réactions) et expressions faciales (dont les micro-expressions) étudiés par la kinésique et la gestique, contact visuel et rôle du regard (clin d'œil complice, regard désapprobateur ou sceptique.
Communication organisationnelleLa communication organisationnelle est l'étude de la communication subordonnée à l'action organisée. C'est aussi l'ensemble des moyens de communication mis en œuvre pour la réalisation d'une tâche organisée. Dans le domaine de la recherche, aux États-Unis ce champ de recherche relève tout naturellement des communication studies, en France la communication organisationnelle est un domaine qui peut être revendiqué par des chercheurs des Sciences de l'Information et de la Communication, mais aussi en Sociologie des organisations, ou encore en sciences de gestion.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Système immunitaire artificielUn système immunitaire artificiel (SIA) est une catégorie d'algorithme inspirée par les principes et le fonctionnement du système immunitaire naturel (SIN) des vertébrés. Ces algorithmes exploitent typiquement les caractéristiques du système immunitaire pour ce qui est de l'apprentissage et de la mémorisation comme moyens de résolution de problèmes. Les fonctionnements simulés dans les SIA comprennent la reconnaissance de motifs, l'hypermutation, la sélection clonale pour les cellules B, la pour les cellules T, la et la théorie des réseaux immunitaires.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Locomotion robotiqueLa locomotion robotique est le nom collectif des différentes méthodes que les robots utilisent pour se déplacer d'un endroit à l'autre. Les robots à roues sont généralement assez efficaces sur le plan énergétique et simples à contrôler. Toutefois, d'autres formes de locomotion peuvent être plus appropriées pour un certain nombre de raisons, par exemple pour traverser un terrain accidenté, ainsi que pour se déplacer et interagir dans des environnements humains.
CobotiqueLa cobotique est le domaine de la collaboration homme-robot, c'est-à-dire de l'interaction, directe ou téléopérée, entre homme et robot pour atteindre un objectif commun. Ce domaine est à l'interface de la cognitique et du facteur humain (comportement, décision, robustesse et contrôle de l'erreur), de la biomécanique (modélisation du comportement et de la dynamique des mouvements) et de la robotique (utilisation d'artefacts pour produire des comportements mécaniques fiables, précis et/ou répétitifs à des fins industrielles, militaires, agricoles, de santé, de convivialité.
Vie artificielleLa vie artificielle est un champ de recherche interdisciplinaire alliant informatique et biologie, mais avec des applications dans des domaines variés tels que l'économie ou l'archéologie. Son objectif est de créer des systèmes artificiels s'inspirant des systèmes vivants, soit sous la forme de programmes informatiques, soit sous la forme de robots. La première manifestation de la vie artificielle date des années 1940.