Un système immunitaire artificiel (SIA) est une catégorie d'algorithme inspirée par les principes et le fonctionnement du système immunitaire naturel (SIN) des vertébrés. Ces algorithmes exploitent typiquement les caractéristiques du système immunitaire pour ce qui est de l'apprentissage et de la mémorisation comme moyens de résolution de problèmes. Les fonctionnements simulés dans les SIA comprennent la reconnaissance de motifs, l'hypermutation, la sélection clonale pour les cellules B, la pour les cellules T, la et la théorie des réseaux immunitaires. Cet article couvre l'implantation algorithmique de ces fonctionnalités. Pour la terminologie biologique, le lecteur pourra se référer à l'article sur le système immunitaire naturel. Du point de vue de l'informatique, le système immunitaire artificiel est un système distribué auto-organisé avec un contrôle décentralisé pouvant effectuer des tâches de classification, de reconnaissance et d'apprentissage à l'aide de processus d'extraction, de communication et de mémorisation. Les modèles de conceptions les plus utilisés sont les réseaux immunitaires, la sélection clonale et la sélection négative. Les algorithmes de sélection clonale sont utilisés couramment pour l'hypermutation des anticorps. Cela permet d'améliorer la chaîne des attributs (comme une mesure de la fonction d'affinité) en utilisant seulement la mutation. La représentation des anticorps et des antigènes est implantée communément par des chaînes d'attributs. Les attributs peuvent être des nombres binaires, entiers ou réels. En principe n'importe quel attribut ordinal peut être utilisé. La correspondance est calculée sur la base de la distance euclidienne, la distance de Manhattan ou la distance de Hamming. Sécurité informatique, détection de fautes. Les travaux sur les SIA ont commencé dans le milieu des années 1980 avec l'article de Farmer, Packard et Perelson (1988) et ceux de Varela et Bersini sur les réseaux immunitaires (1990). Cependant c'est seulement dans le milieu des années 1990 que les SIA devinrent un sujet à part entière.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (2)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.