Diffusion des ondesLa diffusion est le phénomène par lequel un rayonnement, comme la lumière, le son ou un faisceau de particules, est dévié dans diverses directions par une interaction avec d'autres objets. La diffusion peut être isotrope, c'est-à-dire répartie uniformément dans toutes les directions, ou anisotrope. En particulier, la fraction de l'onde incidente qui est retournée dans la direction d'où elle provient est appelée rétrodiffusion (backscatter en anglais). La diffusion peut s'effectuer avec ou sans variation de fréquence.
Espace vectoriel topologiqueEn mathématiques, les espaces vectoriels topologiques sont une des structures de base de l'analyse fonctionnelle. Ce sont des espaces munis d'une structure topologique associée à une structure d'espace vectoriel, avec des relations de compatibilité entre les deux structures. Les exemples les plus simples d'espaces vectoriels topologiques sont les espaces vectoriels normés, parmi lesquels figurent les espaces de Banach, en particulier les espaces de Hilbert. Un espace vectoriel topologique (« e.v.t.
Théorie des cordes topologiquesEn physique théorique, la théorie des cordes topologiques est une version simplifiée de la théorie des supercordes où seule la topologie de la feuille d’univers (i.e. la surface générée par l’évolution temporelle de la corde) entre en compte dans le calcul de la . La théorie des cordes topologiques correspond au cas où la théorie conforme couplée à la gravité est un modèle sigma non linéaire en deux dimensions dont l’espace-cible est une variété de Calabi-Yau.
Variété topologiqueEn topologie, une variété topologique est un espace topologique, éventuellement séparé, assimilable localement à un espace euclidien. Les variétés topologiques constituent une classe importante des espaces topologiques, avec des applications à tous les domaines des mathématiques. Le terme variété peut désigner une variété topologique, ou, le plus souvent, une variété topologique munie d'une autre structure. Par exemple, une variété différentielle est une variété topologique munie d'une structure permettant le calcul différentiel.
Groupe topologiqueEn mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. Les deux axiomes de la définition peuvent être remplacés par un seul : Un morphisme de groupes topologiques est un morphisme de groupes continu.
Chirality (physics)A chiral phenomenon is one that is not identical to its (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Helicity (particle physics) The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion.
Complete topological vector spaceIn functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by or , which are generalizations of , while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces.
Brisure spontanée de symétrieEn physique, le terme brisure spontanée de symétrie (BSS) renvoie au fait que, sous certaines conditions, certaines propriétés de la matière ne semblent pas respecter les équations décrivant le mouvement des particules (on dit qu'elles n'ont pas les mêmes symétries). Cette incohérence n'est qu'apparente et signifie simplement que les équations présentent une approximation à améliorer. Cette notion joue un rôle important en physique des particules et en physique de la matière condensée.
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Chiral modelIn nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N) , where N is the number of quark flavors.