Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Publications associées (111)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Two distinct limits for deep learning have been derived as the network width h -> infinity, depending on how the weights of the last layer scale with h. In the neural tangent Kernel (NTK) limit, the dynamics becomes linear in the weights and is described b ...
Deep neural networks have been empirically successful in a variety of tasks, however their theoretical understanding is still poor. In particular, modern deep neural networks have many more parameters than training data. Thus, in principle they should over ...
Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural ...
In this paper, we trace the history of neural networks applied to natural language understanding tasks, and identify key contributions which the nature of language has made to the development of neural network architectures. We focus on the importance of v ...
Fueled by recent advances in deep neural networks, reinforcement learning (RL) has been in the limelight because of many recent breakthroughs in artificial intelligence, including defeating humans in games (e.g., chess, Go, StarCraft), self-driving cars, s ...
Deep learning models have provided extremely successful methods in most application fields by enabling unprecedented accuracy in various tasks. For audio applications, although the massive complexity of generative models allows handling complex temporal st ...
Humans effortlessly solve push tasks in everyday life but unlocking these capabilities remains a research challenge in robotics. Physical models are often inaccurate or unattainable. State-of-the-art data-driven approaches learn to compensate for these ina ...
In this thesis, we propose new algorithms to solve inverse problems in the context of biomedical images. Due to ill-posedness, solving these problems require some prior knowledge of the statistics of the underlying images. The traditional algorithms, in th ...
We propose a deep-learning method for automatically decomposing noisy Monte Carlo renderings into components that kernelpredicting denoisers can denoise more effectively. In our model, a neural decomposition module learns to predict noisy components and co ...
DeepImageJ offers a user-friendly solution in ImageJ to run trained deep learning models for biomedical image analysis. It includes guiding tools for reliable analyses, contributing to the democratization of deep learning in microscopy. DeepImageJ is a use ...