Publication

TV-based reconstruction of periodic functions

Résumé

We introduce a general framework for the reconstruction of periodic multivariate functions from finitely many and possibly noisy linear measurements. The reconstruction task is formulated as a penalized convex optimization problem, taking the form of a sum between a convex data fidelity functional and a sparsity-promoting total variation based penalty involving a suitable spline-admissible regularizing operator L. In this context, we establish a periodic representer theorem, showing that the extreme-point solutions are periodic L-splines with less knots than the number of measurements. The main results are specified for the broadest classes of measurement functionals, spline-admissible operators, and convex data fidelity functionals. We exemplify our results for various regularization operators and measurement types (e.g., spatial sampling, Fourier sampling, or square-integrable functions). We also consider the reconstruction of both univariate and multivariate periodic functions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.