Generalized functionIn mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions.
Unité de mesureEn physique et en métrologie, une est une . Une unité de mesure peut être définie à partir de constantes fondamentales ou par un étalon, utilisé pour la mesure. Les systèmes d'unités, définis en cherchant le plus large accord dans le domaine considéré, sont rendus nécessaires par la méthode scientifique, dont l'un des fondements est la reproductibilité des expériences (donc des mesures), ainsi que par le développement des échanges d'informations commerciales ou industrielles.
Orthogonal functionsIn mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval: The functions and are orthogonal when this integral is zero, i.e. whenever . As with a basis of vectors in a finite-dimensional space, orthogonal functions can form an infinite basis for a function space.
Carré (algèbre)En arithmétique et en algèbre, le carré est une opération consistant à multiplier un élément par lui-même. La notion s’applique d’abord aux nombres, et en particulier aux entiers naturels, pour lesquels le carré est figuré par une disposition en carré au sens géométrique du terme. Un nombre qui peut s’écrire comme le carré d’un entier est appelé carré parfait. Mais plus généralement, on parle du carré d’une fonction, d’une matrice, ou de tout type d’objet mathématique pour lequel il existe une opération notée multiplicativement, comme la composition des endomorphismes ou le produit cartésien.
Doubly periodic functionIn mathematics, a doubly periodic function is a function defined on the complex plane and having two "periods", which are complex numbers u and v that are linearly independent as vectors over the field of real numbers. That u and v are periods of a function ƒ means that for all values of the complex number z. The doubly periodic function is thus a two-dimensional extension of the simpler singly periodic function, which repeats itself in a single dimension.
List of periodic functionsThis is a list of some well-known periodic functions. The constant function _ () = , where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions. All trigonometric functions listed have period , unless otherwise stated. For the following trigonometric functions: Un is the nth up/down number, Bn is the nth Bernoulli number in Jacobi elliptic functions, The following functions have period and take as their argument.