Loi de distribution des vitesses de MaxwellEn théorie cinétique des gaz, la loi de distribution de vitesses de Maxwell quantifie la répartition statistique des vitesses des particules dans un gaz homogène à l'équilibre thermodynamique. Les vecteurs vitesse des particules suivent une loi normale. Cette loi a été établie par James Clerk Maxwell en 1860 et confirmée ultérieurement par Ludwig Boltzmann à partir de bases physiques qui fondent la physique statistique en 1872 et 1877.
Couche de Kennelly–HeavisideLa couche de Heaviside ou couche de Kennelly–Heaviside constitue une partie comprise entre 90 et 150 km de l'ionosphère terrestre (région E). Elle réfléchit les ondes radio dans la gamme VHF, permettant des liaisons trans-horizon. Elle est nommée d'après Arthur Edwin Kennelly et Oliver Heaviside. L'existence d'une couche atmosphérique permettant la réflexion des ondes radio observée par Guglielmo Marconi en 1901 a été expliquée indépendamment en 1902 par Arthur Edwin Kennelly et Oliver Heaviside.
Suite de ShefferEn mathématiques, et plus précisément en analyse combinatoire, une suite de Sheffer, nommée d'après Isador M. Sheffer, est une suite de polynômes satisfaisant à des conditions permettant le calcul ombral. Soit p une suite de polynômes (de variable x) telle que deg(pn) = n. On définit un opérateur linéaire Q par : Q p(x) = np(x) ; la famille des p étant une base, ceci définit Q pour tous les polynômes.
Loi de Stokes-EinsteinLa loi de Stokes-Einstein ou loi de Stokes-Einstein-Sutherland donne le coefficient de diffusion d'un soluté dans un solvant. Elle est basée sur les lois du mouvement brownien et de la loi de Stokes donnant la force exercée par un liquide sur une particule solide. Cette loi est ainsi nommée pour les travaux d'Albert Einstein (1905) et de William Sutherland (1904).
Orthogonal functionsIn mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval: The functions and are orthogonal when this integral is zero, i.e. whenever . As with a basis of vectors in a finite-dimensional space, orthogonal functions can form an infinite basis for a function space.