Domaine protéiqueredresse=1.15|vignette|Exemples de structures de protéines organisées en domaines distincts. Le domaine de couleur brique, appelé domaine PH, est commun aux deux protéines,. Sa fonction est de fixer le phosphatidylinositol-3,4,5-trisphosphate (PIP3) Un domaine protéique est une partie d'une protéine capable d'adopter une structure de manière autonome ou partiellement autonome du reste de la molécule. C'est un élément modulaire de la structure des protéines qui peuvent ainsi être composées de l'assemblage de plusieurs de ces domaines.
Protéines intrinsèquement désordonnéesLes protéines intrinsèquement désordonnées ou intrinsèquement non structurées sont des protéines qui manquent de structure tridimensionnelle stable, ce qui leur confère une forte plasticité qui est à l'origine de leur importance dans les phénomènes biologiques. Une protéine peut être totalement désordonnée, mais le cas le plus courant est celui où seulement une partie de la molécule, plus ou moins longue, est désordonnée (exemple : ).
Structure des protéinesLa structure des protéines est la composition en acides aminés et la conformation en trois dimensions des protéines. Elle décrit la position relative des différents atomes qui composent une protéine donnée. Les protéines sont des macromolécules de la cellule, dont elles constituent la « boîte à outils », lui permettant de digérer sa nourriture, produire son énergie, de fabriquer ses constituants, de se déplacer, etc. Elles se composent d'un enchaînement linéaire d'acides aminés liés par des liaisons peptidiques.
Protein dynamicsProteins are generally thought to adopt unique structures determined by their amino acid sequences. However, proteins are not strictly static objects, but rather populate ensembles of (sometimes similar) conformations. Transitions between these states occur on a variety of length scales (tenths of Å to nm) and time scales (ns to s), and have been linked to functionally relevant phenomena such as allosteric signaling and enzyme catalysis.
Protein fold classIn molecular biology, protein fold classes are broad categories of protein tertiary structure topology. They describe groups of proteins that share similar amino acid and secondary structure proportions. Each class contains multiple, independent protein superfamilies (i.e. are not necessarily evolutionarily related to one another). Four large classes of protein that are generally agreed upon by the two main structure classification databases (SCOP and CATH).
Protein complexA protein complex or multiprotein complex is a group of two or more associated polypeptide chains. Protein complexes are distinct from multidomain enzymes, in which multiple catalytic domains are found in a single polypeptide chain. Protein complexes are a form of quaternary structure. Proteins in a protein complex are linked by non-covalent protein–protein interactions. These complexes are a cornerstone of many (if not most) biological processes.
Protéine membranaire périphériqueredresse=1.67|vignette|Représentation des différents types d'interaction entre protéines membranaires monotopiques et membrane biologique : (1) interaction par une hélice α amphiphile parallèle au plan de la membrane ; (2) interaction par une boucle hydrophobe ; (3) interaction par un lipide membranaire lié par covalence (lipidation) ; (4) interaction électrostatique ou ionique avec les lipides membranaires (par exemple par l'intermédiaire de cations de calcium Ca).
Domaine (biologie)En classifications biologiques, le domaine (néolatinisé en dominium) est le premier niveau de rang, au-dessus des règnes. Le terme domaine a été introduit pour discuter de la classification du monde vivant selon un modèle divisant celui-ci en trois grands groupes supposés monophylétiques. Bien que pratique, le modèle à trois domaines est critiquable puisqu'au moins l'un d'entre eux n'est pas monophylétique. Par ailleurs, certains taxonomistes lui préfèrent, au nom de l'antériorité, le terme vieilli d'empire.
Hypothèse du monde à ARNLhypothèse du monde à ARN (RNA world) est une hypothèse selon laquelle l'acide ribonucléique serait le précurseur de toutes les macromolécules biologiques et particulièrement de l'ADN et des protéines. Cette hypothèse permet une explication de l'apparition des différentes fonctions biologiques dans le cadre de l'étude des origines de la vie. L'hypothèse du monde à acide ribonucléique (ARN) est que l'ARN était la principale — et sans doute la seule — forme de vie avant l'émergence de la première cellule à ADN.
ARN polymérase ARN-dépendanteL'ARN polymérase ARN-dépendante (RdRp, RDR), parfois appelée ARN réplicase, est une nucléotidyltransférase qui catalyse la réaction : nucléoside triphosphate + PPi + . Cette enzyme catalyse la réplication de l'ARN, contrairement à une ARN polymérase typique qui catalyse la biosynthèse d'un brin d'ARN à partir d'une matrice d'ADN. Elle catalyse donc la synthèse d'un brin d'ARN complémentaire à partir d'un brin d'ARN servant de matrice.