Publication

Benefiting From Bicubically Down-Sampled Images for Learning Real-World Image Super-Resolution

Résumé

Super-resolution (SR) has traditionally been based on pairs of high-resolution images (HR) and their low-resolution (LR) counterparts obtained artificially with bicubic downsampling. However, in real-world SR, there is a large variety of realistic image degradations and analytically modeling these realistic degradations can prove quite difficult. In this work, we propose to handle real-world SR by splitting this ill-posed problem into two comparatively more well-posed steps. First, we train a network to transform real LR images to the space of bicubically downsampled images in a supervised manner, by using both real LR/HR pairs and synthetic pairs. Second, we take a generic SR network trained on bicubically downsampled images to super-resolve the transformed LR image. The first step of the pipeline addresses the problem by registering the large variety of degraded images to a common, well understood space of images. The second step then leverages the already impressive performance of SR on bicubically downsampled images, sidestepping the issues of end-to-end training on datasets with many different image degradations. We demonstrate the effectiveness of our proposed method by comparing it to recent methods in real-world SR and show that our proposed approach outperforms the state-of-the-art works in terms of both qualitative and quantitative results, as well as results of an extensive user study conducted on several real image datasets.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Super-résolution
En traitement du signal et en , la super-résolution désigne le processus qui consiste à améliorer la résolution spatiale, c'est-à-dire le niveau de détail, d'une image ou d'un système d'acquisition. Cela regroupe des méthodes matérielles qui visent à contourner les problèmes optiques et autres difficultés physiques rencontrées lors de l'acquisition d'image, ainsi que des techniques algorithmiques qui, à partir d'une ou de plusieurs images déjà capturées, créent une image de meilleure résolution.
Image
Une image est une représentation visuelle, voire mentale, de quelque chose (objet, être vivant ou concept). Elle peut être naturelle (ombre, reflet) ou artificielle (sculpture, peinture, photographie), visuelle ou non, tangible ou conceptuelle (métaphore), elle peut entretenir un rapport de ressemblance directe avec son modèle ou au contraire y être liée par un rapport plus symbolique. Pour la sémiologie ou sémiotique, qui a développé tout un secteur de sémiotique visuelle, l'image est conçue comme produite par un langage spécifique.
Restauration (image)
La restauration d'image est une technique d' qui permet, à l'aide d'un logiciel de retouche d'image, de rendre à une image numérisée l'apparence de son état d'origine. Pour ce faire, l'image est dans un premier temps importée dans l'ordinateur, généralement à l'aide d'un scanner, dans une , qui permet de travailler les détails. Ensuite, à l'aide d'un logiciel de comme Photoshop ou GIMP, l'infographiste dessine littéralement sur l'image, afin d'en supprimer les défauts.
Afficher plus
Publications associées (34)

Cross-resolution Face Recognition via Identity-Preserving Network and Knowledge Distillation

Touradj Ebrahimi, Yuhang Lu

Cross-resolution face recognition has become a challenging problem for modern deep face recognition systems. It aims at matching a low-resolution probe image with high-resolution gallery images registered in a database. Existing methods mainly leverage pri ...
2023

Pixel super-resolution with spatially entangled photons

Edoardo Charbon, Jiuxuan Zhao

Pixelation is common in quantum imaging systems and limit the image spatial resolution. Here, the authors introduce a pixel super-resolution approach based on measuring the full spatially-resolved joint probability distribution of spatially-entangled photo ...
NATURE PORTFOLIO2022

Context-Aware Image Super-Resolution Using Deep Neural Networks

Mohammad Saeed Rad

Image super-resolution is a classic ill-posed computer vision and image processing problem, addressing the question of how to reconstruct a high-resolution image from its low-resolution counterpart. Current state-of-the-art methods have improved the perfor ...
EPFL2021
Afficher plus
MOOCs associés (4)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus