Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The outstanding performance of NiOOH/FeOOH-based oxygen evolution reaction (OER) catalysts is rationalized in terms of a bifunctional mechanism involving two distinct active sites. In this mechanism, the OOHads reaction intermediate, which unfavorably affects the overall OER activity due to the linear scaling relationship, is replaced by O2 adsorbed at the active site on FeOOH and Hads adsorbed at the NiOOH substrate. Here, we use the computational hydrogen electrode method to assess promising models of both the FeOOH catalyst and the NiOOH hydrogen acceptor. These two materials are interfaced in various ways to evaluate their performance as bifunctional OER catalysts. In some cases, overpotentials as low as 0.16 V are found, supporting the bifunctional mechanism as a means to overcome the limitations imposed by linear scaling relationships.
William Curtin, Michael Frederick Francis