Espace probabiliséUn espace de probabilité(s) ou espace probabilisé est construit à partir d'un espace probabilisable en le complétant par une mesure de probabilité : il permet la modélisation quantitative de l'expérience aléatoire étudiée en associant une probabilité numérique à tout événement lié à l'expérience. Formellement, c'est un triplet formé d'un ensemble , d'une tribu sur et d'une mesure sur cette tribu tel que . L'ensemble est appelé l'univers et les éléments de sont appelés les événements.
Completeness (statistics)In statistics, completeness is a property of a statistic in relation to a parameterised model for a set of observed data. A complete statistic T is one for which any proposed distribution on the domain of T is predicted by one or more prior distributions on the model parameter space. In other words, the model space is 'rich enough' that every possible distribution of T can be explained by some prior distribution on the model parameter space. In contrast, a sufficient statistic T is one for which any two prior distributions will yield different distributions on T.
Fitness approximationFitness approximation aims to approximate the objective or fitness functions in evolutionary optimization by building up machine learning models based on data collected from numerical simulations or physical experiments. The machine learning models for fitness approximation are also known as meta-models or surrogates, and evolutionary optimization based on approximated fitness evaluations are also known as surrogate-assisted evolutionary approximation.
Space mappingThe space mapping methodology for modeling and design optimization of engineering systems was first discovered by John Bandler in 1993. It uses relevant existing knowledge to speed up model generation and design optimization of a system. The knowledge is updated with new validation information from the system when available. The space mapping methodology employs a "quasi-global" formulation that intelligently links companion "coarse" (ideal or low-fidelity) and "fine" (practical or high-fidelity) models of different complexities.
Processus de BernoulliEn probabilités et en statistiques, un processus de Bernoulli est un processus stochastique discret qui consiste en une suite de variables aléatoires indépendantes qui prennent leurs valeurs parmi deux symboles. Prosaïquement, un processus de Bernoulli consiste à tirer à pile ou face plusieurs fois de suite, éventuellement avec une pièce truquée. Une variable dans une séquence de ce type peut être qualifiée de variable de Bernoulli. Un processus de Bernoulli est une chaîne de Markov. Son arbre de probabilité est un arbre binaire.
École néoclassiqueL'école néoclassique est une école de pensée économique dont la thèse centrale est que les marchés disposent de mécanismes autorégulateurs qui, en l'absence d'intervention extérieure, conduisent à l'optimum économique ; l'État n'a ainsi qu'un rôle très mineur à jouer dans le domaine économique. Fondée par les économistes marginalistes Léon Walras, William Stanley Jevons et Carl Menger à la fin du , elle a dominé la science économique jusqu'à l'avènement du keynésianisme amendé.
Probabilité algorithmiqueEn théorie algorithmique de l'information, la probabilité algorithmique, aussi connue comme probabilité de Solomonoff, est une méthode permettant d’assigner une probabilité à une observation donnée. Il a été inventé par Ray Solomonoff dans les années 1960. Elle est utilisée dans la théorie de l'inférence inductive et dans l'analyse des algorithmes. En particulier, dans sa thèorie de l'induction, Solomonoff utilise une telle formulation pour exprimer la probabilité a priori dans la formule de Bayes.