Graphe sommet-connexeEn théorie des graphes, un graphe connexe . Un graphe autre qu'un graphe complet est de degré de sommet-connexité k s'il est k-sommet-connexe sans être k+1-sommet-connexe, donc si k est la taille du plus petit sous-ensemble de sommets dont la suppression déconnecte le graphe. Les graphes complets ne sont pas inclus dans cette version de la définition car ils ne peuvent pas être déconnectés en supprimant des sommets. Le graphe complet à n sommets est de degré de connexité n-1.
Graphe à distance héréditairevignette| Exemple d'un graphe à distance héréditaire. En théorie des graphes, un graphe à distance héréditaire (aussi appelé graphe complètement séparable) est un graphe dans lequel les distances entre sommets dans tout sous-graphe induit connexe sont les mêmes que celles du graphe tout entier ; autrement dit, tout sous-graphe induit hérite les distances du graphe entier. Les graphes à distance héréditaire ont été nommés et étudiés pour la première fois par Howorka en 1977, alors qu'une classe équivalente de graphes a déjà été considérée en 1970 par Olaru et Sachs qui ont montré que ce sont des graphes parfaits.
Arbre AVLEn informatique théorique, les arbres AVL ont été historiquement les premiers arbres binaires de recherche automatiquement équilibrés. Dans un arbre AVL, les hauteurs des deux sous-arbres d'un même nœud diffèrent au plus de un. La recherche, l'insertion et la suppression sont toutes en dans le pire des cas. L'insertion et la suppression nécessitent d'effectuer des rotations. La dénomination « arbre AVL » provient des noms respectifs de ses deux inventeurs, respectivement et , qui l'ont publié en 1962 sous le titre An Algorithm for the Organization of Information.
Science des réseauxvignette|Les liens de la network science La Science des Réseaux, ou Network Science, est une discipline scientifique émergente qui se donne pour objet l'étude des relations, liens et interconnexions entre les choses, et non les choses en elles-mêmes. Champ interdisciplinaire de recherche, elle s'applique en physique, biologie, épidémiologie, science de l'information, science cognitive et réseaux sociaux. Elle vise à découvrir des propriétés communes au comportement de ces réseaux hétérogènes via la construction d'algorithmes et d'outils.
Large numbersLarge numbers are numbers significantly larger than those typically used in everyday life (for instance in simple counting or in monetary transactions), appearing frequently in fields such as mathematics, cosmology, cryptography, and statistical mechanics. They are typically large positive integers, or more generally, large positive real numbers, but may also be other numbers in other contexts. Googology is the study of nomenclature and properties of large numbers.
Graphe grilleIn graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space \mathbb{R}^n, forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid.
Degré (théorie des graphes)thumb|Un graphe non orienté où on a indiqué le degré de chaque sommet sur ce sommet. Dans ce graphe, le degré maximal est et le degré minimal est . En mathématiques, et plus particulièrement en théorie des graphes, le degré (ou valence) d'un sommet d'un graphe est le nombre de liens (arêtes ou arcs) reliant ce sommet, avec les boucles comptées deux fois. Le degré d'un sommet est noté . Dans le cas d'un graphe orienté, on parle aussi du degré entrant d'un sommet , c'est-à-dire le nombre d'arcs dirigés vers le sommet , et du degré sortant de ce sommet , c'est-à-dire le nombre d'arcs sortant de .
Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Noms des grands nombresLes noms des grands nombres sont des systèmes de dérivation lexicale qui permettent de nommer des nombres au-delà du langage courant. Dans les langues occidentales modernes, les grands nombres sont généralement nommés d'après l'un ou l'autre des deux systèmes incompatibles suivants : les échelles longue et courte. Ces deux systèmes définissent différemment les mots « billion », « trillion », « quadrillion » L'échelle longue définit aussi les noms « billiard », « trilliard », « quadrilliard » L'usage a souvent varié, même dans un pays donné, suivant les époques.
Arbre BEn informatique, un arbre B (appelé aussi B-arbre par analogie au terme anglais « B-tree ») est une structure de données en arbre équilibré. Les arbres B sont principalement mis en œuvre dans les mécanismes de gestion de bases de données et de systèmes de fichiers. Ils stockent les données sous une forme triée et permettent une exécution des opérations d'insertion et de suppression en temps toujours logarithmique. Le principe est de permettre aux nœuds parents de posséder plus de deux nœuds enfants : c'est une généralisation de l’arbre binaire de recherche.