Resonances on GaN-on-Si Epitaxies: A Source of Output Capacitance Losses in Power HEMTs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
GeSn is a promising group-IV semiconductor material for on-chip Si photonics devices and high-mobility transistors. These devices require the use of doped GeSn regions, achieved preferably in situ during epitaxy. From the electronic valence point of view, ...
The engineering of tin halide perovskites has led to the development of p-type transistors with field-effect mobilities of over 70 cm2 V-1 s-1. However, due to their background hole doping, these perovskites are not suitable for n-type transistors. Ambipol ...
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
Gallium Nitride (GaN) has enabled groundbreaking developments in the field of optoelectronics and radio frequency communication. More recently, GaN devices for power conversion applications have demonstrated excellent potential. Thanks to Gallium Nitride w ...
GaN metal-oxide-semiconductor high electron mobility transistors (MOS)HEMTs) offer outstanding properties for next-generation power electronics devices. The high conductivity, high voltage blocking capability, high operation frequency, and device-level int ...
Accurate characterization of the dynamic ON-resistance (RON) degradation is important to predict conduction losses for gallium nitride high-electron-mobility transistors (GaN HEMTs). However, even for the same device, many inconsistent results of dynamic R ...
2023
III-N family of materials has offered multiple groundbreaking technologies in the field of optoelectronics and high-power radio-frequency (RF) devices. Blue light-emitting diodes (LEDs) have revolutionized low-energy lighting. Gallium nitride (GaN) RF mark ...
The fabrication of high-performance metal-oxide-based thin-film transistors (TFTs) on flexible and transparent polymer substrates by solution processes has garnered substantial interest, particularly for manufacturing flex-ible electronics. However, the an ...
The international actions against global warming demands reductions in carbon emission and more efficient use of energy. Energy efficiency in the conversion and use of electricity, as an important form of energy in the modern life, has strong environmental ...
Gallium Nitride (GaN) is a wonder material which has widely transformed the world by enabling
energy-efficient white light-emitting diodes. Over the past decade, GaN has also emerged as one
of the most promising materials for developing power devices which ...